首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
强电流直流伸展电弧CVD纳米金刚石涂层微型工具   总被引:1,自引:0,他引:1  
本文研制了强直流伸展电弧金刚石涂层沉积设备,它可产生长达400 mm的等离子体弧柱,可沉积金刚石涂层的区域大,能够在复杂形状硬质合金刀具上沉积金刚石涂层,有利于实现金刚石涂层硬质合金工具的产业化生产.在直径1 mm的微型铣刀上沉积了纳米金刚石涂层,研究了沉积压力对金刚石涂层组织的影响,沉积压力对金刚石涂层的晶粒尺寸和表面形貌有显著影响.随着沉积压力的降低,沉积的金刚石涂层晶粒尺寸减小,当沉积压力为0.80 kPa时,可沉积出纳米金刚石涂层.涂层的厚度均匀,其表面光滑、平整,且与硬质合金基体之间有较好的附着力.用激光Raman对金刚石涂层进行了表征.  相似文献   

2.
通过求解等离子体弧柱区的质量方程、动量方程、能量方程、电动势方程、磁场方程和组分方程,对非转移弧等离子体炬及其产生的等离子体射流的传热与流动特性进行了数值模拟研究,获得了等离子体炬及其射流区域的温度和速度分布。结果表明:呈现上升的伏安特性曲线;等离子体炬出口处温度和速度呈现抛物线分布;等离子体进气速度增加,等离子体速度增加,温度变化不明显;电流增加,等离子体速度和温度都明显增加。  相似文献   

3.
采用自行研制的强电流直流伸展电弧等离子体CVD设备对真空渗硼预处理的YG6刀片进行了金刚石涂层沉积,并对放于有效沉积区域不同位置沉积出的金刚石涂层刀片以及刀片自身不同位置之表面涂层的形貌、厚度、质量进行了分析、研究。结果表明:(1)、硬质合金工具强电流直流伸展弧等离子体CVD金刚石涂层的组织、形貌、厚度、质量都是均匀一致的。(2)、利用强电流直流伸展电弧等离子体CVD设备可进行硬质合金金刚石涂层的批量沉积。  相似文献   

4.
PCB钻头上金刚石涂层的制备   总被引:2,自引:2,他引:0  
本文在直径为0.8mm硬质合金钻头上进行沉积金刚石涂层的研究。在沉积之前,先用硝酸和铁氰化钾进行腐蚀处理,以去除表面的Co。用微波等离子体CVD设备进行金刚石的沉积。在金刚石涂层沉积过程中,钻头尖端在微波电磁场中产生辉光放电现象,导致钻头尖端刃部很难获得金刚石涂层。通过使用金属丝屏蔽的方法改变钻头周围的微波电磁场分布,成功的采用微波等离子体CVD法在钻头上沉积出了金刚石涂层。用扫描电子显微镜(SEM),能量色散谱仪(EDS)和激光拉曼光谱(Raman)对钻头的表面形貌和金刚石薄膜的质量进行了表征,同时在铝基复合材料上进行了钻孔测试。结果表明金刚石薄膜表面比较光滑,晶粒尺寸较小,涂层质量良好,薄膜的附着力也较高。  相似文献   

5.
综述了北京科技大学在直流电弧等离子体喷射CVD金刚石膜沉积系统研制和改进及大面积高质量(包括光学级)金刚石自支撑膜沉积的研究进展和产业化状况.用同样技术研发出了可用于复杂形状硬质合金工具金刚石膜涂层工具批量生产的强电流直流伸展电弧等离子体CVD金刚石膜涂层系统,讨论了利用该设备研发金刚石膜涂层硬质合金工具及其现场切削试验的结果.  相似文献   

6.
以非转移弧等离子体炬为研究对象,对等离子体电弧和阳极的传热与流动进行了数值模拟,并求解了质量方程、动量方程、能量方程、电势方程和磁场方程,获得了等离子体弧的温度、速度和电流密度分布。计算结果表明,阳极内壁面温度变化不大;等离子体炬出口处径向温度和速度分布类似抛物线形分布;提高进气速度或减小电弧电流,均使得电弧阳极斑点向下游移动。  相似文献   

7.
甲烷浓度对批量生产金刚石涂层刀片的影响   总被引:2,自引:2,他引:0  
采用微波等离子体CVD(MWCVD)法小批量地生产了金刚石涂层刀片,在金刚石薄膜沉积的过程中,研究了碳源浓度对沉积金刚石膜的均匀性的影响。用扫描电子显微镜(SEM)和激光拉曼光谱(Raman)对薄膜的表面形貌和质量进行了表征。结果表明较低的低甲烷浓度适合金刚石涂层刀片的批量生产。  相似文献   

8.
降低表面粗糙度是改善金刚石涂层刀具使用性能的有效手段.采用微波等离子体化学气相沉积(MPCVD)金刚石膜,通过在沉积过程中调整工艺参数,先后在硬质合金基体上沉积了2层不同的金刚石薄膜.研究了基体位置、甲烷浓度等对薄膜表面形貌的影响.用扫描电子显微镜(SEM)、原子力显微镜(AFM)和压痕法对样品进行了分析测试,结果表明,该方法在保证金刚石涂层质量的同时有效降低了薄膜表面的粗糙度,表面粗糙度值Ra<0.2 μm.  相似文献   

9.
采用特殊的等离子体技术成功研制出适合于金刚石涂层工具工业化生产的中试设备-强电流直流伸展电弧等离子体CVD-500型中试设备。单腔体沉积的沉积工件数量在100支以上;对该设备的沉积均匀性进行了系统的研究,位于等离子体扩散区同一柱面不同位置沉积的金刚石形貌及质量均匀、一致,涂层厚度的不均匀度在±3.5%的范围内;同一沉积试件不同位置处的金刚石形貌及质量稍有差别,但均在许可范围之内,涂层厚度的不均匀度在±2%的范围内;等离子体的扩散区的径向6 cm~8cm,轴向距阳极7 cm-19cm的范围为该设备的有效沉积区域。  相似文献   

10.
几种沉积氮化钛涂层的新技术   总被引:2,自引:0,他引:2  
介绍了几种沉积氮化钛涂层的技术。利用辅助磁场消除多弧离子镀沉积氮化钛膜层中的熔滴,细化膜层组织;安装平面大弧源和柱状弧源的多弧离子镀膜机,使多弧离子镀膜机结构简化,操作简单,采用非平衡磁控溅射源扩展了镀膜室内等离子体范围,有利于磁控溅射沉积氮化钛超硬涂层。  相似文献   

11.
为实现在大口径环状工件内壁沉积金刚石涂层,研制一种能够产生旋转电弧的分体式等离子炬。利用活动阳极形成的伞状电弧帽,改变平行于轴且向下吹的工作气体旋转电离的方向,使其垂直吹向环状工件内壁。测试不同阳极直径下电弧的工作参数,并用相机拍摄相应的电弧形貌。进行金刚石涂层沉积试验,在内径为180?mm的硬质合金拉拔模具和内径为100?mm的石墨内表面沉积出高质量的金刚石涂层。利用拉曼光谱仪和扫描电镜对涂层的成分、表面形貌等进行测试分析。已沉积金刚石涂层的硬质合金模具成功应用于超高压电缆铝护套的拉拔设备中。   相似文献   

12.
To develop a high-rate diamond deposition process using combustion flame method, diamond deposition equipment with twin acetylene/oxygen welding torch was manufactured, and diamond deposition by using this equipment was carried out. 304 Stainless steel plates and molybdenum plates were used as substrates. The diamond deposition was conducted under the following conditions: oxygen flow rate: 1.25 SLM, acetylene/oxygen flow ratio: 1.15, and diamond deposition temperature: around 1473 K. Consequently, diamonds could be deposited even on the stainless steel substrate, and diamond deposition rate was promoted by using twin torch equipment. Besides, the diamond/molybdenum hybrid coating using diamonds deposited by twin torch equipment have the same wear-resistant property as that using diamonds by the single torch equipment. From these results, this technique was thought to have high potential for high-rate diamond deposition in combustion flame method.  相似文献   

13.
To obtain a coating of high quality, a new type of plasma torch was designed and constructed to increase the stability of the plasma arc and reduce the air entrainment into the plasma jet. The torch, called bi-anode torch, generates an elongated arc with comparatively high arc voltage and low arc fluctuation. Spraying experiments were carried out to compare the quality of coatings deposited by a conventional torch and a bi-anode torch. Alumina coatings and tungsten carbide coatings were prepared to appraise the heating of the sprayed particles in the plasma jets and the entrainment of the surrounding air into the plasma jets, respectively. The results show that anode arc root fluctuation has only a small effect on the melting rate of alumina particles. On the other hand, reduced air entrainment into the plasma jet of the bi-anode torch will drastically reduce the decarbonization of tungsten carbide coatings.  相似文献   

14.
It is well known that the coating quality of plasma spraying is strongly influenced by the instability of jets in the plasma spray, which is due to arc root fluctuation. Three dimensional (3D) unsteady-state modeling was employed in this research to analyze the arc root fluctuation in a DC non-transferred plasma torch. Numerical calculations on the distributions of gas temperature and velocity in the plasma torch were carried out using argon as the plasma gas. The electrical current density and potential were also discussed. The results indicate that the fluctuation of arc inside the plasma torch is mainly induced by the movement of the arc root on the anode surface. The arc root moves downstream with the flow of gas, and simultaneously the arc is bent by electromagnetic force. When the arc bends close enough to the anode boundary, a new arc root is formed somewhere upstream of the current attachment. In this paper the nature of the arc root fluctuation is presented, and also it is demonstrated that the voltage-drop calculated is larger than that measured experimentally because the plasma inside the torch has some deviation from the local thermodynamic equilibrium state hypothesis used in the current study.  相似文献   

15.
Using statistical design of experiments, the arc current, total gas flow rate, percent secondary gas (He), and powder feed rate have been varied to assess the torch behavior and establish its correlation to coating properties. The torch response includes arc voltage drop, torch efficiency, and plasma jet geometry. High-speed images of the luminous plasma jet for each operating condition have been acquired with a LaserStrobeℳ videocamera, and image analysis has been used to quantify the jet length and jet fluctuations as additional torch responses. Porosity and unmelted particles, which are determined using image analysis of a micrograph of a NiAl coating cross section, were selected as principal coating characteristics. These findings are expected to be useful for optimization of new spray processes and for evaluation of new torch designs.  相似文献   

16.
The development of coating formation processes involving electric arcs depends on process stability and the capacity to ensure a constant reproducibility of coating properties. This is particularly important when considering suspension plasma spraying or solution precursor plasma spraying. Submicron particles closely follow plasma instabilities and have nonhomogeneous plasma treatment. Recently, it has been shown that arc voltage fluctuations in direct-current (dc) plasma torches, showing dominant fluctuation frequencies between 4 and 6 kHz, are linked to pressure oscillations in the cathode cavity of the plasma torch. In this study, first, a method to isolate the different oscillation modes in arc voltage and pressure signals using signal processing methods is presented. Second, correlations between the different modes of oscillations are analyzed following the plasma torch operating parameters. Lastly, it is shown that the use of an acoustic stub, mounted on the torch body, decreases the amplitude of arc voltage fluctuations and slightly increases the mean voltage.  相似文献   

17.
Arc instabilities in a plasma spray torch   总被引:2,自引:1,他引:2  
The control over coating quality in plasma spraying is partly dependent on the arc and jet instabilities of the plasma torch. Different forms of instabilities have been observed with different effects on the coating quality. We report on an investigation of these instabilities based on high-speed end-on observation of the arc. The framing rate of 40,500 frames per second has allowed the visualization of the anode attachment movement and the determination of the thickness of the cold-gas boundary layer surrounding the arc. The images have been synchronized with voltage traces. Data have been obtained for a range of arc currents, and mass flow rates for different gas injectors and for anodes displaying different amounts of wear. The analysis of the data has led to quantitative correlations between the cold-gas boundary layer thickness and the instability mode for the range of operating parameters. The arc instabilities can be seen to enhance the plasma jet instabilities and the cold-gas entrainment. These results are particularly useful for guiding plasma torch design and operation in minimizing the influence of plasma jet instabilities on coating properties.  相似文献   

18.
Relationships between process inputs and coating properties were characterized using a twin-wire arc torch spraying zinc. Specifically, standoff distance, primary and secondary atomizing gas pressures, and arc current were varied in order to determine their effects on deposition efficiency, surface roughness, coating porosity, and spray particle size. Process associations were investigated using an analysis of variance with a design of experiments approach with the intent of determining which spray parameters affect each of the aforementioned coating properties. The associations found are consistent with other studies of the twin-wire arc spray process and provide a framework for selecting process operating conditions based on desired coating properties. Such a specific outline has not been previously available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号