首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Leukocytes and leukocyte-derived microparticles contain low levels of tissue factor (TF) and incorporate into forming thrombi. Although this circulating pool of TF has been proposed to play a key role in thrombosis, its functional significance relative to that of vascular wall TF is poorly defined. We tested the hypothesis that leukocyte-derived TF contributes to thrombus formation in vivo. Compared to wild-type mice, mice with severe TF deficiency (ie, TF(-/-), hTF-Tg+, or "low-TF") demonstrated markedly impaired thrombus formation after carotid artery injury or inferior vena cava ligation. A bone marrow transplantation strategy was used to modulate levels of leukocyte-derived TF. Transplantation of low-TF marrow into wild-type mice did not suppress arterial or venous thrombus formation. Similarly, transplantation of wild-type marrow into low-TF mice did not accelerate thrombosis. In vitro analyses revealed that TF activity in the blood was very low and was markedly exceeded by that present in the vessel wall. Therefore, our results suggest that thrombus formation in the arterial and venous macrovasculature is driven primarily by TF derived from the blood vessel wall as opposed to leukocytes.  相似文献   

2.
Exposure of blood to tissue factor (TF) activates the extrinsic (TF:FVIIa) and intrinsic (FVIIIa:FIXa) pathways of coagulation. In this study, we found that mice expressing low levels of human TF ( approximately 1% of wild-type levels) in an mTF(-/-) background had significantly shorter lifespans than wild-type mice, in part, because of spontaneous fatal hemorrhages. All low-TF mice exhibited a selective heart defect that consisted of hemosiderin deposition and fibrosis. Direct intracardiac measurement demonstrated a 30% reduction (P < 0.001) in left ventricular function in 8-month-old low-TF mice compared with age-matched wild-type mice. Mice expressing low levels of murine FVII ( approximately 1% of wild-type levels) exhibited a similar pattern of hemosiderin deposition and fibrosis in their hearts. In contrast, FIX(-/-) mice, a model of hemophilia B, had normal hearts. Cardiac fibrosis in low-TF and low-FVII mice appears to be caused by hemorrhage from cardiac vessels due to impaired hemostasis. We propose that TF expression by cardiac myocytes provides a secondary hemostatic barrier to protect the heart from hemorrhage.  相似文献   

3.
Acetaminophen (N-acetyl-p-aminophenol [APAP]) is one of the leading causes of acute liver failure, and APAP hepatotoxicity is associated with coagulopathy in humans. We tested the hypothesis that activation of the coagulation system and downstream protease-activated receptor (PAR)-1 signaling contribute to APAP-induced liver injury. Fasted C57BL/J6 mice were treated with either saline or APAP (400 mg/kg intraperitoneally) and were euthanized 0.5-24 hours later. Hepatotoxicity and coagulation system activation occurred by 2 hours after administration of APAP. Treatment with APAP also caused a rapid and transient increase in liver procoagulant activity. In addition, significant deposition of fibrin was observed in the liver by 2 hours, and the concentration of plasminogen activator inhibitor-1 in plasma increased between 2 and 6 hours. Pretreatment with heparin attenuated the APAP-induced activation of the coagulation system and hepatocellular injury and diminished hepatic fibrin deposition at 6 hours. Loss of hepatocellular glutathione was similar in APAP-treated mice pretreated with saline or heparin, suggesting that heparin did not diminish bioactivation of APAP. In mice deficient in tissue factor, the principal cellular activator of coagulation, APAP-induced liver injury, activation of coagulation, and hepatic fibrin deposition were reduced at 6 hours. Formation of the tissue factor-factor VIIa complex leads to the generation of thrombin that can activate cells through cleavage of PAR-1. Mice lacking PAR-1 developed less injury and hepatic fibrin deposits at 6 hours in response to APAP than control mice. CONCLUSION: Activation of the coagulation system and PAR-1 signaling contribute significantly to APAP-induced liver injury.  相似文献   

4.
Tissue factor (TF) initiates the protease coagulation cascade in response to tissue injury. Homozygous deficiency of murine TF results in embryonic lethality, which is rescued by low-level expression of human TF. These low-TF mice have been shown to develop cardiac fibrosis. We tested the hypothesis that the development of cardiac fibrosis in low-TF mice results from dysregulated protease expression and is affected by gender. Mice were divided into the age groups 2-5, 6-12, 13-18 and 19+ weeks. Fibrosis was assessed by trichrome staining. Protease expression was measured in male and female mice by RT-PCR for mRNA and zymography, ELISA or immunoblot for protein. Urokinase plasminogen activator (uPA) activity was determined by zymography and chromogenic substrate assay. A marked gender effect was noted for the development of fibrosis, with interstitial collagen deposition occurring from 9 weeks in male low-TF mice, but not until 19 weeks in low-TF females. This delayed onset in females was accompanied by delayed up-regulation of molecular markers of injury. Matrix metalloproteinase (MMP)-3 and tissue inhibitor of metalloproteinase (TIMP)-1 expression were up-regulated in the hearts of male low-TF mice from 6 to 12 weeks and in females from 19 weeks. MMP/TIMP dysregulation was not seen prior to cardiac fibrosis and did not appear to explain the gender differences. However, uPA expression and activity were down-regulated prior to cardiac fibrosis in low-TF females, but were up-regulated in age-matched males. This suggests that the down-regulation of uPA in female low-TF mice protects them from more severe cardiac fibrosis.  相似文献   

5.
6.
Superoxide dismutase (SOD) is a major defender against excessive superoxide generated under hyperglycemia. We have recently reported that renal SOD1 (cytosolic CuZn-SOD) and SOD3 (extracellular CuZn-SOD) isoenzymes are remarkably down-regulated in KK/Ta-Ins2Akita diabetic mice, which exhibit progressive diabetic nephropathy (DN), but not in DN-resistant C57BL/6- Ins2Akita (C57BL/6-Akita) diabetic mice. To determine the role of SOD1 and SOD3 in DN, we generated C57BL/6-Akita diabetic mice with deficiency of SOD1 and/or SOD3 and investigated their renal phenotype at the age of 20 weeks. Increased glomerular superoxide levels were observed in SOD1?/?SOD3+/+ and SOD1?/?SOD3?/? C57BL/6-Akita mice but not in SOD1+/+SOD3?/? C57BL/6-Akita mice. The SOD1?/?SOD3+/+ and SOD1?/?SOD3?/? C57BL/6-Akita mice exhibited higher glomerular filtration rate, increased urinary albumin levels, and advanced mesangial expansion as compared with SOD1+/+SOD3+/+ C57BL/6-Akita mice, yet the severity of DN did not differ between the SOD1?/?SOD3+/+ and SOD1?/?SOD3?/? C57BL/6-Akita groups. Increased renal mRNA expression of transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF), reduced glomerular nitric oxide (NO), and increased renal prostaglandin E2 (PGE2) production were noted in the SOD1?/?SOD3+/+ and SOD1?/?SOD3?/? C57BL/6-Akita mice. This finding indicates that such renal changes in fibrogenic cytokines, NO, and PGE2, possibly caused by superoxide excess, would contribute to the development of overt albuminuria by promoting mesangial expansion, endothelial dysfunction, and glomerular hyperfiltration. The present results demonstrate that deficiency of SOD1, but not SOD3, increases renal superoxide in the setting of diabetes and causes overt renal injury in nephropathy-resistant diabetic mice, and that SOD3 deficiency does not provide additive effects on the severity of DN in SOD1-deficient C57BL/6-Akita mice.  相似文献   

7.
Pedersen B  Holscher T  Sato Y  Pawlinski R  Mackman N 《Blood》2005,105(7):2777-2782
Inactivation of the murine tissue factor (TF) gene or tissue factor pathway inhibitor 1 (TFPI) gene results in embryonic lethality, indicating that both are required for embryonic development. We have shown that expression of low levels of TF from a transgene (hTF) rescues TF-null embryos. However, low-TF mice (mTF(-/-)/hTF+) have hemostatic defects in the uterus, placenta, heart, and lung. In this study, we hypothesized that the death of TFPI-/- embryos was due to unregulated TF/FVIIa activity and that the hemostatic defects in low-TF mice were due to insufficient TF expression. Therefore, we attempted to rescue TFPI-/- embryos by reducing TF expression, and to restore hemostasis in low-TF mice by abolishing TFPI expression. Intercrossing TFPI(+/-)/mTF(+/-)/hTF+/- mice generated close to the expected number of TFPI(-/-)/low-TF mice at weaning age from 128 offspring, indicating rescue of TFPI-/- embryos from embryonic lethality. Conversely, a decrease in TFPI levels dose-dependently prolonged the survival of low-TF mice and rescued the hemorrhagic defects in the lung and placenta but not in the heart or uterus. These results indicate that the correct balance between TF and TFPI in different organs is required to maintain hemostasis during embryonic development and in adult mice.  相似文献   

8.
Implantation of small liver grafts causes liver injury and defective regeneration leading to graft failure. We investigated whether Kupffer cell-dependent TNF-alpha signaling contributes to this poor outcome. Partial 30% liver transplantation was performed in C57BL/6 wild-type mice (control group), and in three groups with down-regulation of the TNF-alpha pathway: (i) TNF receptor 1 knockout [TNFR-1(-/-)] mice, and mice pretreated with (ii) gadolinium chloride or (iii) pentoxifylline (PTX). Fifty-percent partial liver transplantation, a model associated with full recovery, and transplantation in IL-6 knockout [IL-6(-/-)] mice were performed in some experiments. Graft injury, regeneration, portal flow, liver microcirculation, leukocyte adhesion, and animal survival were assessed. Animal survival rates were 14% in the control group vs. 43% in the gadolinium chloride group, 57% for the TNFR-1(-/-) group, and 86% in the PTX group (P < 0.001). Markers of liver injury were reduced in all treated groups when compared with controls. Each treated group disclosed better portal flow and sinusoid perfusion, decreased leukocyte adherence, particularly in the PTX group. Liver regeneration occurred only in the treated groups. IL-6 and IL-10 levels were dramatically up-regulated (50x) in the PTX group, and at lower levels in other experimental groups. The protective effect of PTX was lost in IL-6(-/-) mice and protection was restored by a single dose of r-IL-6. In conclusion, interruption of TNF-alpha signaling or depletion of Kupffer cells improves survival after 30% liver transplantation, reduces liver injury, and enhances regeneration. The superior effects of PTX are mediated by IL-6.  相似文献   

9.
BACKGROUND/AIMS: The biological effects of ischaemic preconditioning include NF-kappaB activation, increased TNF synthesis, stimulation of cell cycle entry and hepatoprotection against ischaemia-reperfusion (IR) injury. Low dose TNF initiates the priming phase of liver regeneration via NF-kappaB and IL-6. To determine whether (1) IL-6 is released during preconditioning and confers protection against hepatic IR injury, and (2) IL-6 could mediate the biological effects of preconditioning. METHODS: Wildtype (wt) and TNF-/- C57BL6 mice were subjected to 90 min partial hepatic ischaemia and 2-44 h reperfusion with or without prior 10 min ischaemic preconditioning. To restitute liver injury, TNF-/- mice were administered murine TNF 5 microg/kg iv 1 min prior to IR. Murine recombinant IL-6 (500 ng/kg iv) was administered 30 min prior to IR, either to wt mice or to TNF-/--repleted mice; in the latter case, 1 min before preconditioning. RESULTS: In wt mice, IL-6 attenuated hepatic IR injury and stimulated cell cycle entry. IR injury in TNF-repleted TNF-/- mice was not ameliorated by preconditioning. However, prior IL-6 administration conferred hepatoprotection (IL-6/preconditioned: 349+/-169 U/L vs vehicle/preconditioned: 1250+/-608 U/L, P<0.01). CONCLUSIONS: IL-6 is one likely mediator of the hepatoprotective and pro-proliferative effects of ischaemic preconditioning.  相似文献   

10.
11.
BACKGROUND/AIMS: Preservation of function requires tight regulation of the cellular events initiated when hepatic ischemia is followed by reperfusion (IR). One important mechanism modulating the cytokine-directed response to injury is Suppressors of Cytokine Signaling. SOCS1 and SOCS3 ensure appropriate intensity and duration of cytokine signaling through negative feedback on JAK-STAT signaling. The contribution of SOCS1 and SOCS3-mediated regulation to the evolution of hepatic IR injury is unknown. METHODS: C57Blk6 mice were subjected to mild (20min) or severe (90min) hepatic ischemia. Liver was analyzed for cytokine and SOCS1/3 induction as well as JAK-STAT activation at intervals after reperfusion. RESULTS: Tnf, Il-1beta, and Il-6 expression paralleled increasing injury severity. Despite early phosphorylation of both STAT1 and STAT3 after severe injury, only nuclear translocation of activated STAT3, suggesting that the induction of target genes through JAK-STAT after IR is predominantly via STAT3. Socs3 was expressed across the injury spectrum while Socs1 was induced only in the face of severe IR injury. Severe IR in Il-6 deficient mice confirmed that Il-6, acting via STAT3, serves as a primary inducer of both regulatory mechanisms. CONCLUSIONS: Under the influence of IL-6-mediated STAT3 signaling, Socs1 serves as a complimentary regulatory mechanism when Socs3 is insufficient to limit cytokine-mediated inflammation after hepatic IR.  相似文献   

12.
The identification of cellular pathways capable of limiting ischemia/reperfusion (I/R) injury remains a frontier in medicine, and its clinical relevance is urgent. Histidine triad nucleotide binding protein 1 (HINT1) is a tumor suppressor that influences apoptosis. Because apoptotic pathways are a feature of I/R injury, we asked whether Hint1 influences hepatic I/R injury. Hint1(-/-) and C57BL/6 mice were subjected to 70% liver ischemia followed by reperfusion for 3 or 24 hours or to a sham operation. The serum aminotransferase levels, histological lesions, apoptosis, reactive oxygen species, and expression of B cell lymphoma 2-associated X protein (Bax), heme oxygenase 1 (HO-1), interleukin-6 (IL-6), IL-10, tumor necrosis factor-a, Src, nuclear factor kappa B (p65/RelA), and c-Jun were quantified. The responses to toll-like receptor ligands and nicotinamide adenine dinucleotide phosphate oxidase activity in Kupffer cells were compared in Hint1(-/-) mice and C57BL/6 mice. After I/R, the levels of serum aminotransferases, parenchymal necrosis, and hepatocellular apoptosis were significantly lower in Hint1(-/-) mice versus control mice. Furthermore, Bax expression decreased more than 2-fold in Hint1(-/-) mice, and the increases in reactive oxygen species and HO-1 expression that were evident in wild-type mice after I/R were absent in Hint1(-/-) mice. The phosphorylation of Src and the nuclear translocation of p65 were increased in Hint1(-/-) mice, whereas the nuclear expression of phosphorylated c-Jun was decreased. The levels of the protective cytokines IL-6 and IL-10 were increased in Hint1(-/-) mice. These effects increased survival after I/R in mice lacking Hint1. Hint1(-/-) Kupffer cells were less activated than control cells after stimulation with lipopolysaccharides. CONCLUSION: The Hint1 protein influences the course of I/R injury, and its ablation in Kupffer cells may limit the extent of the injury.  相似文献   

13.
李晨  陈迈  马恒 《心脏杂志》2016,28(3):263-267
目的 探讨程序性坏死(necroptosis)在衰老心肌缺血/再灌注(I/R)损伤中的关键作用。 方法 成年( 3~4月龄)和老龄( 22~24月龄)雄性C57BL/6小鼠20只各随机分为对照组与I/R组,建立小鼠急性心肌I/R模型(缺血30 min再灌注4 h)。再灌注结束后,取心肌组织并分别应用蛋白质免疫印迹法(Western blot)和免疫共沉淀法(Co-Immunoprecipitation;Co-IP)检测necroptosis标志蛋白的表达及其修饰变化。结果 与成年心肌相比,necroptosis的标志蛋白RIP1、RIP3在衰老心肌中的表达均升高(P<0.05),necroptosis的调节蛋白去乙酰化酶SIRT2的表达及活性也显著升高(P<0.05),RIP1的去乙酰化水平显著升高(P<0.05)。给予小剂量necroptosis抑制剂Necrostatin-1(Nec-1)处理,可以显著减少衰老心肌I/R梗死面积(P<0.05)。结论 本研究发现在衰老心肌I/R损伤中necroptosis显著增加,表明necroptosis可能在衰老心肌缺血损伤中有重要作用。  相似文献   

14.
We employed a novel mouse line that expresses low levels of human tissue factor (TF) in the absence of murine TF to analyze the role of TF in gestation. Low-TF female mice had a 14-18% incidence of fatal postpartum uterine hemorrhage, suggesting that TF plays an important role in uterine hemostasis. Low-TF female mice mated with low-TF male mice had a 42% incidence of fatal midgestational hemorrhage (n = 41), whereas no fatal midgestational hemorrhages were observed in low-TF female mice mated with wild-type male mice (n = 43). Placentas of low-TF embryos from both low-TF and normal (+/-) TF females were abnormal and contained numerous maternal blood pools in the labyrinth. Placentas of TF null embryos surviving beyond embryonic day 10.5 exhibited similar defects. The mouse maternal-embryonic placental barrier consists of four cellular layers (layers I, II, and III and endothelial cells), where layer I lines the maternal lacunae. Comparison of TF-deficient placentas with control placentas by immunohistochemical and ultrastructural analyses revealed thinning of layer I and a reduction in the number of cellular contacts of layer I trophoblasts spanning the maternal blood space between adjacent trabeculae. These structural changes in low-TF and TF null placentas result in enlarged maternal lacunae, as determined by morphometric analysis, and placental hemorrhage, which leads to midgestational death of low-TF female mice. This study demonstrated that TF is required for uterine hemostasis and revealed an unexpected role of TF in the maintenance of the placental labyrinth.  相似文献   

15.
Heart regeneration in adult MRL mice   总被引:7,自引:0,他引:7       下载免费PDF全文
The reaction of cardiac tissue to acute injury involves interacting cascades of cellular and molecular responses that encompass inflammation, hormonal signaling, extracellular matrix remodeling, and compensatory adaptation of myocytes. Myocardial regeneration is observed in amphibians, whereas scar formation characterizes cardiac ventricular wound healing in a variety of mammalian injury models. We have previously shown that the MRL mouse strain has an extraordinary capacity to heal surgical wounds, a complex trait that maps to at least seven genetic loci. Here, we extend these studies to cardiac wounds and demonstrate that a severe transmural, cryogenically induced infarction of the right ventricle heals extensively within 60 days, with the restoration of normal myocardium and function. Scarring is markedly reduced in MRL mice compared with C57BL/6 mice, consistent with both the reduced hydroxyproline levels seen after injury and an elevated cardiomyocyte mitotic index of 10-20% for the MRL compared with 1-3% for the C57BL/6. The myocardial response to injury observed in these mice resembles the regenerative process seen in amphibians.  相似文献   

16.
Burn injury is associated with inflammatory responses and metabolic alterations including insulin resistance. Impaired insulin receptor substrate-1 (IRS-1)-mediated insulin signal transduction is a major component of insulin resistance in skeletal muscle following burn injury. To further investigate molecular mechanisms that underlie burn injury-induced insulin resistance, we study a role of inducible nitric oxide synthase (iNOS), a major mediator of inflammation, on burn-induced muscle insulin resistance in iNOS-deficient mice. Full-thickness third-degree burn injury comprising 12% of total body surface area was produced in wild-type and iNOS-deficient C57BL/6 mice. Insulin-stimulated activation (phosphorylation) of IR, IRS-1, and Akt was assessed by immunoblotting and immunoprecipitation. Insulin-stimulated glucose uptake by skeletal muscle was evaluated ex vivo. Burn injury caused induction of iNOS in skeletal muscle of wild-type mice. The increase of iNOS expression paralleled the increase of insulin resistance, as evidenced by decreased tyrosine phosphorylation of IR and IRS-1, IRS-1 expression, insulin-stimulated activation of phosphatidylinositol 3-kinase and Akt/PKB, and insulin-stimulated glucose uptake in mouse skeletal muscle. The absence of iNOS in genetically engineered mice significantly lessened burn injury-induced insulin resistance in skeletal muscle. In wild-type mice, insulin tolerance test revealed whole-body insulin resistance in burned mice compared with sham-burned controls. This effect was reversed by iNOS deficiency. Unexpectedly, however, blood glucose levels were depressed in both wild-type and iNOS-deficient mice after burn injury. Gene disruption of iNOS ameliorated the effect of burn on IRS-1-mediated insulin signaling in skeletal muscle of mice. These findings indicate that iNOS plays a significant role in burn injury-induced skeletal muscle insulin resistance.  相似文献   

17.
PurposeTo investigate whether mitochondrial DNA (mtDNA) damage, specifically deletion, contributes to the development of atherosclerosis or is simply a secondary effect of the primary factors causing atherosclerosis.Materials and methodsmtDNA deletion was detected by PCR in the aortic root of atherosclerosis-prone C57BL/6J apolipoprotein (Apo) E gene deficient (−/−) mice and control C57BL/6J mice at different ages. Atherosclerotic plaques in the Apo E−/− mice were assessed using frozen sections of the aortic root. The protein levels of COX III and 8-oxoguanine glycosylase (OGG1) were determined.Resultswhile mtDNA deletions accumulated significantly in mice as young as 2- month-old, atherosclerotic plaques were not detected until mice were 6 months old or older, suggesting that mtDNA deletion occurs prior to the formation of atherosclerotic plaques in the aortic root of these mice. Moreover, the expression levels of mtDNA-encoded COX III protein in both 2-month-old and 16-month-old C57BL/6J ApoE−/− mice were significantly lower than those in C57BL/6J mice (p < 0.05). Additionally, the protein level of 8-oxoguanine glycosylase (OGG1), a mitochondrial enzyme that functions in DNA excision repair, decreased with age in these mice, indicating that age-related down-regulation of mtDNA excision repair also contributes to atherosclerosis in C57BL/6J ApoE−/− mice.ConclusionThese results reveal that mtDNA deletions occur during the early “initiation” stage of atherosclerosis in C57BL/6J ApoE−/− mice and have the potential to promote atherosclerosis.  相似文献   

18.
CXC chemokine receptor 3 (CXCR3) ligands CXCL9 and CXCL10 are produced at high levels in mice and humans infected with Leishmania donovani, but their contribution to host resistance against L. donovani is not clear. Here, using CXCR3(-/-) mice, we demonstrate that, although CXCR3 regulates early immune cell trafficking and hepatic inflammation during L. donovani infection, it is not essential for immunity against L. donovani, unlike L. major. CXCR3(-/-) C57BL/6 mice show a delayed onset of hepatic inflammation and granuloma formation after L. donovani infection. However, they mount an efficient T helper cell type 1 response, recruit T cells to the liver, and control parasite growth as efficiently as do CXCR3(+/+) C57BL/6 mice.  相似文献   

19.
Epsilon protein kinase C (epsilonPKC) plays pivotal roles in myocardial infarction and in heart failure. Although cardiac transplantation is a well-established therapy for severe heart failure, allograft rejection and host inflammatory responses limit graft function and reduce life expectancy. Here we determined whether sustained epsilonPKC inhibition beginning 3 days after transplantation suppress allograft rejection and improve cardiac transplantation using a murine heterotopic transplantation model. Hearts of FVB mice (H-2(q)) were transplanted into C57BL/6 mice (H-2(b)). Delivery of the epsilonPKC inhibitor, TAT(47-57)-epsilonV1-2 (epsilonV1-2, n=9, 20 mg/kg/day), or the carrier control peptide, TAT(47-57) (TAT, n=8), by osmotic pump began 3 days after transplantation and continued for the remaining 4 weeks. epsilonV1-2 treatment significantly improved the beating score throughout the treatment. Infiltration of macrophages and T cells into the cardiac grafts was significantly reduced and parenchymal fibrosis was decreased in animals treated with epsilonV1-2 as compared with control treatment. Finally, the rise in pro-fibrotic cytokine, TGF-beta and monocyte recruiting chemokine MCP-1 levels was almost abolished by epsilonV1-2 treatment, whereas the rise in PDGF-BB level was unaffected. These data suggest that epsilonPKC activity contributes to the chronic immune response in cardiac allograft and that an epsilonPKC-selective inhibitor, such as epsilonV1-2, could augment current therapeutic strategies to suppress inflammation and prolong graft survival in humans.  相似文献   

20.
Aging is associated with replacement of normal kidney parenchyma by fibrosis. Because hydrogen sulfide (H2S) ameliorates kidney fibrosis in disease models, we examined its status in the aging kidney. In the first study, we examined kidney cortical H2S metabolism and signaling pathways related to synthesis of proteins including matrix proteins in young and old male C57BL/6 mice. In old mice, increase in renal cortical content of matrix protein involved in fibrosis was associated with decreased H2S generation and AMPK activity, and activation of insulin receptor (IR)/IRS-2-Akt-mTORC1-mRNA translation signaling axis that can lead to increase in protein synthesis. In the second study, we randomized 18–19 month-old male C57BL/6 mice to receive 30 μmol/L sodium hydrosulfide (NaHS) in drinking water vs. water alone (control) for 5 months. Administration of NaHS increased plasma free sulfide levels. NaHS inhibited the increase in kidney cortical content of matrix proteins involved in fibrosis and ameliorated glomerulosclerosis. NaHS restored AMPK activity and inhibited activation of IR/IRS-2-Akt-mTORC1-mRNA translation axis. NaHS inhibited age-related increase in kidney cortical content of p21, IL-1β, and IL-6, components of the senescence-associated secretory phenotype. NaHS abolished increase in urinary albumin excretion seen in control mice and reduced serum cystatin C levels suggesting improved glomerular clearance function. We conclude that aging-induced changes in the kidney are associated with H2S deficiency. Administration of H2S ameliorates aging-induced kidney changes probably by inhibiting signaling pathways leading to matrix protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号