首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为了研究采用全三脱工艺KR铁水脱硫→脱磷转炉→脱碳转炉→RH精炼→板坯连铸工艺生产的高级别焊丝钢洁净度水平,进行了5炉工业试验。通过对冶炼过程系统取样分析,研究了钢中总氧含量变化、夹杂物的转变规律及机理。结果表明,转炉终点氧质量分数平均为610.2×10~(-6),进站钢水氧质量分数平均为484×10~(-6),加Al前氧质量分数为220×10~(-6),破空氧质量分数为4.6×10~(-6),整体控制较好。RH进站时夹杂物主要为MnO-SiO_2-Al_2O_3类复合夹杂,夹杂物大多为球形,其中有部分夹杂物尺寸超过20μm;RH破空后,中包至铸坯夹杂物均主要为Al_2O_3型夹杂物,同时含有少量的MgO-SiO_2类夹杂。  相似文献   

2.
为了生产高品质的IF钢,对不同钢包镇静时间钢水以及铸坯全氧和夹杂物的变化进行分析和讨论。结果显示,若保证铸坯全氧质量分数小于20×10-6,应保证钢包镇静时间为25min以上;生产实践表明,采用优化后的工艺,中间包全氧质量分数小于23×10-6的合格率达到了98%,铸坯全氧质量分数小于20×10-6的合格率达到了98%。  相似文献   

3.
张正群 《特殊钢》2018,39(1):48-50
RH精炼过程加铝前IF钢(/%:≤0.005C,≤0.04Si,0.05~0.20Mn,≤0.015P,≤0.015S,0.03~0.06Als)中的氧含量为340×10-6~467×10-6,用Aspex扫描电镜研究了加铝后210 min钢中夹杂物类型、尺寸和数量,结果表明,IF钢在RH工序加铝脱氧后钢液中夹杂物的类型主要为氧化铝,随着RH循环时间的增加,钢液中夹杂物数量减少;加铝真空循环6 min后可进行合金化,进一步延长循环时间,钢液中夹杂物的去除速度减缓;加铝前IF钢液中的初始氧含量偏高时,可适当延长循环时间至8 min,再进行合金化。  相似文献   

4.
为进一步提升RH精炼的冶炼效率,更好与高拉速连铸相匹配,对RH冶炼IF钢过程中加Ti时机和纯循环时间对夹杂物的影响开展了试验研究。结果表明,钢液中T.O质量分数在加Al 5 min后小于0.003 0%;夹杂物的数密度在合金化4~5 min后具有最小值,随后增加纯循环时间,夹杂物的数密度无明显变化。在300 t RH工业生产实践中,Al-Ti间隔时间为2 min、纯循环时间为5 min和Al-Ti间隔3 min、纯循环4 min的处理工艺可以保证钢液中的夹杂物充分上浮去除,夹杂物的数密度为0.7~0.8个/mm2,可以实现RH的高效化精炼。在Al-Ti间隔时间大于1 min、纯循环时间大于3 min的操作条件下钢液中未检测到尺寸大于50 μm的夹杂物。基于以上工艺优化,IF钢的RH真空处理时间已经降低至20 min。向钢液中加入Al后主要形成Al2O3夹杂物,加入钛铁合金化后钢液中会形成富[Ti]区域,[Ti]将Al2O3还原而生成Al-Ti氧化物。随着[Ti]在钢液内的扩散以及Al-Ti氧化物的生成,钢液中的[Al]将Al-Ti氧化物还原而生成Al2O3,最终生成以Al-Ti氧化物为核心、外层由Al2O3包裹的复合夹杂物。  相似文献   

5.
对比分析柳钢150t转炉炼钢系统两种(转炉-钢包炉精炼-RH精炼-连铸和转炉-RH精炼-连铸)生产IF钢的工艺。结果表明,采用转炉-RH精炼-连铸工艺生产的IF钢:(1)洁净度相对更高,生产成本更低;(2)RH精炼结束w(C)≤10×10-6、w全(O)≤31×10-6、w(N)≤20×10-6,中间包w(C)≤11×10-6、w全(O)≤25×10-6、w(N)≤20×10-6;(3)造成钢水洁净度偏低的主要原因是RH脱氧合金化后循环时间偏短,且RH精炼炉渣控制不稳定。  相似文献   

6.
通过优化转炉、RH炉、连铸工艺技术,确保夹杂物有充分的上浮时间,使得中间包钢水全氧低于25×10~(-6)比例大于90%,IF钢夹杂降等量从2011年1.41%降低到目前0.15%,吨钢铝耗从2011年1.86kg/t降低到目前的1.05kg/t,钢水洁净度得到进一步改善。  相似文献   

7.
袁晓峰  岳峰  包燕平  李朋欢  夏茂森  张磊 《钢铁》2011,46(3):38-41,70
研究了国内某钢厂BOF-LF-RH-ASP流程生产冷轧IF钢的工艺特点,采用碳含量控制和钢包渣还原处理技术,RH脱碳结束钢中ω([C])<15×10-6,后序增碳质量分数小于15×10-6,渣中(FeO+MnO)质量分数小于3%,平均中间包钢水全氧质量分数为17×10-6.成功开发的DDQ级IF钢板,满足了客户对其深冲...  相似文献   

8.
以汽车外板用高级IF钢为研究对象,首先分析了冶炼全流程中夹杂物的变化,然后重点分析了RH关键操作对钢水洁净度的影响。RH加Ti前钢液中夹杂物是Al2O3,加Ti后钢液中夹杂物是Al-Ti-O复合夹杂,RH冶炼和连铸过程中夹杂物成分基本不变。铝-钛间隔时间试验部分结果显示4 min时钢液洁净度较好。RH纯循环3 min后夹杂物总量基本没有变化,5μm以下的小夹杂总量在纯循环6 min时有所降低。渣中TFe含量影响RH出站到中间包阶段的夹杂物增量,建议控制w(TFe)≤5%。  相似文献   

9.
为缩短首钢京唐RH冶炼IF钢的脱碳处理周期,对现行工艺进行了取样研究。结果表明:RH脱碳阶段表观脱碳速率常数K_c受真空度、供氧模式等条件的制约;纯循环阶段初期钢水全氧含量较高,且大型夹杂较多,随着纯循环时间的延长,全氧含量逐渐降低并趋于稳定。通过增设预抽真空操作、采用合适的供氧模式、优化定氧时间、调整最佳脱碳时间及纯循环时间等措施,RH冶炼IF钢时间平均缩短了8.3 min,且钢水具有良好的纯净度。  相似文献   

10.
针对180 t RH精炼工艺存在的真空度低、超低碳钢处理时间长、钢中氧含量高及脱硫效率低等问题,研究并优化了RH真空脱气、脱碳升温、脱氧、脱硫等工艺,使RH工作真空度提高到100 Pa以下,超低碳钢处理时间缩短至平均36.5 min,超低碳钢钢中氧的质量分数最低为13×10-6。优化工艺降低了钢中[H]、[N]、[C]、[O]、[S]等元素的含量,提高了钢水洁净度,缩短了RH精炼时间,提高了RH精炼生产率。  相似文献   

11.
通过在210 t RH精炼IF钢3个浇次的试验,采用扫描电镜详细研究了RH精炼过程中调Ti时机对IF钢洁净度的影响。结果表明,加Al后2、4、6 min调Ti,RH结束时钢液中的N含量平均分别为26.7×10-6、23.6×10-6、27.4×10-6。当吹氧升温所耗氧气量在30~40 m3,RH到站氧平均为579×10-6时,RH结束T[O]为70.3×10-6,当吹氧升温氧耗量在75~90 m3,RH到站氧平均为669×10-6时,RH结束T[O]为109.2×10-6。随着加Al前氧活度增加,RH结束时T[O]总体呈增加趋势。加Al后6 min调Ti钢中5 μm当量直径夹杂物数量密度最低为9.32个/mm2,夹杂物数量密度最低。  相似文献   

12.
基于IF钢(/%:≤0.0025C,≤0.005Si,0.01~0.12Mn,≤0.020P,≤0.010S,0.02~0.04Als,0.03~0.05Ti)冶炼过程工艺数据的统计,分析了Ar站钢水氧含量和RH脱碳期加铝量对钢中T[O]的影响,以及合金加入时机,顶渣改质处理和连铸保护浇铸对钢水洁净度的影响。研究结果表明,适当提高转炉终点氧含量和温度、延长加铝和钛铁之间的时间间隔、顶渣改质处理、连铸保护浇铸等方法可有效提高钢水洁净度。生产结果得出,通过RH进站钢水温度平均提高2.4℃,通过控制转炉下渣量,使顶渣厚度由≥80 mm降至60~75 mm,使RH脱碳过程加铝炉次由原36%降至3%,通过顶渣改质,使(FeO+MnO)由原22%降至17%,连浇炉数由8炉提高到10炉,连铸中间包T[O]由37.4×10-6降低至21.6×10-6,钢水洁净度得到了显著提高。  相似文献   

13.
为了研究采用BOF-LF-RH-CC工艺生产的A32船板钢洁净度水平,进行了三炉工业实验.通过对冶炼过程系统取样分析,研究了钢中总氧、氮含量变化,夹杂物的转变规律及机理.结果表明:该工艺生产的船板钢有较高的洁净度,中包总氧控制在2×10-5以下,氮含量控制在4×10-5以下;LF精炼过程中,钢中总氧、夹杂物数量密度和平均尺寸均降低,夹杂物转变为CaO-MgO-Al2O3三元系;RH精炼过程中,钢中总氧和夹杂物数量密度降低,而夹杂物平均尺寸升高;钙处理过程中,夹杂物数量密度升高,而夹杂物平均尺寸降低,夹杂物转变为CaO-Al2O3-CaS三元系.   相似文献   

14.
无间隙原子钢(IF钢)主要用于汽车、家电等行业,除需要极低的C、N含量外,对最终产品的表面质量也有严格要求。钢中O含量和夹杂物对产品的表面质量影响很大。快速降低钢中C含量、同时保证钢的高洁净度是非常重要的。为此,通过在Ruhrstahl Hereaeus(RH)精炼?连铸过程密集取样,采用ASPEX扫描电镜详细研究了RH吹氧强制脱碳工艺下吹氧量对IF钢洁净度的影响。结果表明,本实验条件下,吹氧量对精炼?连铸过程中夹杂物的类型和形貌没有影响。吹氧量对RH精炼前期(加Al后4 min内)钢液洁净度影响较大,而对后期生产过程中钢液的洁净度影响不大;精炼前期,吹氧量高,钢液中总氧(T.O)含量和夹杂物的量增加。簇群状夹杂物主要出现在RH破空之前,真空精炼结束后钢液中很难发现簇群状夹杂物。中间包钢液洁净度与RH吹氧量相关性不大,而与加Al脱氧前钢液中O含量相关性很大,加Al脱氧前钢液中O含量高,中间包钢液洁净度差;为提高中间包钢液的洁净度,应尽量减少加Al脱氧前钢液中的O含量。随着生产的进行,钢液中T.O含量、夹杂物的量呈下降趋势,洁净度逐渐提高。   相似文献   

15.
为提高鞍钢三炼钢生产的IF钢质量,对三炼钢转炉-RH精炼-连铸生产IF钢的工艺过程开展了较为系统的分析研究。研究发现试生产中RH真空精炼过程[C]含量过高,浇铸过程中增碳、二次氧化比较严重,经改进调整之后,铸坯中w(C)在30×10-6左右,w(N)在25×10-6以下,w(T.O)在20×10-6左右,达到了较高的洁净度水平。  相似文献   

16.
西昌钢钒厂由于转炉热量不足而以转炉—LF精炼—RH精炼—连铸工艺生产IF钢,为探究RH强制脱碳与自然脱碳工艺生产IF钢精炼效果,采用生产数据统计、氧氮分析、夹杂物自动扫描、扫描电镜和能谱分析等手段,对不同脱碳工艺对顶渣氧化性以及钢的洁净度影响进行了详细研究。结果表明:(1)与自然脱碳工艺炉次相比,采用强制脱碳工艺的炉次在转炉结束与RH进站钢中的平均[O]含量更低;(2)两种工艺脱碳结束钢中的[O]含量基本在同一水平;(3)强制脱碳工艺的炉次在RH结束时渣中平均T.Fe的质量分数降低了1.3%。在能满足RH脱碳效果的前提下,尽量提高转炉终点钢液碳含量、降低钢液氧含量,后续在RH精炼时采用强制吹氧脱碳工艺,适当增大吹氧量来弥补钢中氧,可显著降低IF钢顶渣氧化性。自然脱碳工艺与强制脱碳工艺控制热轧板T.O含量均比较理想;与自然脱碳工艺相比,强制脱碳工艺可有效降低IF钢[N]含量,这与强制脱碳工艺真空室内碳氧反应更剧烈所导致的CO气泡更多和气液反应面积更大有关。脱碳工艺对IF钢热轧板中夹杂物类型、尺寸及数量没有明显影响,夹杂物主要由Al2O3夹杂、Al2O3–TiOx夹杂与其他类夹杂物组成,以夹杂物的等效圆直径表示夹杂物尺寸,以上三类夹杂物平均尺寸分别为4.5、4.4和6.5 μm,且钢中尺寸在8 μm以下的夹杂物数量占比高于75%。在RH精炼过程中,尽量降低RH脱碳结束钢中[O]含量,有利于提高钢液洁净度。   相似文献   

17.
在参考80炉次SPHD、SPHE和IF钢生产数据的基础上,采用多元线性回归分析建立了用Al脱氧的RH精炼终点钢水酸溶铝含量-[Als]的计算模型,分析了RH脱碳结束时钢水氧活度、脱氧加铝量和钢水净循环时间对终点钢水酸溶铝含量的影响。结果表明,RH脱碳结束钢水氧活度、脱氧加铝量是影响终点钢水酸溶铝含量的重要因素;当RH脱碳后钢水温度、氧活度、炉渣中FeO+MnO含量-(FeO+MnO)以及钢水的净循环时间分别在1 600℃、2×10-4、15%和8 min时,要控制终点钢水酸溶铝为0.02%~0.05%须在RH脱氧过程中控制加铝量0.86~1.53 kg/t。  相似文献   

18.
Based on the current process and equipment conditions of No.3 steelmaking and continuous rolling plant, which consists of desulphurization and slag skimming of hot metal, 260t combined blown BOF, rimmed steel tapping with slag stopping process, RH-TB vacuum treatment process and medium thin slab continuous casting, the methods for improving cleanliness of IF steel in BOF smelting, RH vacuum treatment and continuous casting were investigated. According to results of theoretical analysis and experiments, a series of quality controlling schemes were proposed for improving cleanliness of IF steel via controlling chemical composition, T[O] content, tapping temperature, shrouded casting and controlling stability of continuous casting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号