首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
为了达到节能降耗的目的,脱磷炉采用回吃脱碳炉返回渣的工艺。主要研究了脱碳炉渣的熔化特性以及作为炉料在脱磷炉中的应用效果。结果表明,通过每炉次加入约3.5t的脱碳炉渣,可平均节约1.01t石灰,4.71kg/t钢铁料消耗,脱磷炉终点炉渣的岩相组成主要由硅酸二钙、RO相、玻璃相和少量的金属铁粒组成。加入返回渣后脱磷炉终点炉渣中硅酸二钙和铁酸二钙含量有所增加,玻璃相含量降低,炉渣碱度有所升高,脱磷炉终点钢水成分控制水平有所提高。由此表明,采用脱碳炉渣返回脱磷炉循环利用减少了石灰等原辅料和钢铁料消耗,同时达到了预期的脱磷效果。  相似文献   

2.
通过对双联工艺生产汽车板中300 t脱磷转炉进行脱碳转炉热态渣循环工艺的研究,分析了热态渣循环利用过程对脱磷转炉脱磷效率以及辅料消耗的影响。结果表明,热态渣循环工艺能够充分利用脱碳转炉热态渣高CaO、低P_2O_5以及成渣快的特点,从而实现脱磷炉的高效脱磷。采用热态渣循环工艺以后,热态渣试验炉次钢种半钢终点磷质量分数平均降低0. 003 7%,平均脱磷率提升至63. 55%。试验炉次石灰使用量较常规炉次平均每炉降低2. 18 t。  相似文献   

3.
首钢京唐钢铁联合有限责任公司是首钢搬迁调整的重要载体,钢铁厂的建设并非是污染物的转移,而是按照循环经济的理念,做到固体废弃物接近“零排放”。重点论述了首钢京唐炼钢厂转炉一次除尘灰、炉渣、余钢等固体废弃物的处理难点及工艺控制点,并结合京唐公司“全三脱”工艺特点,相继开发了脱碳炉热态渣返回脱磷炉、钢包铸余渣返回脱磷半钢包回收利用等技术,实现了炼钢厂固体废弃物的厂内循环利用。  相似文献   

4.
为实现“全三脱”工艺少渣冶炼,进一步降低辅料消耗,首钢京唐开发了热态脱硫渣、液态脱碳渣及铸余渣钢直接返回利用工艺。对热态渣、钢的可回收性进行了分析,并通过工业试验验证了工艺的应用效果。结果表明,回收利用5 t的脱硫渣,脱硫剂消耗可降低30%~40%,铁水温降相对减少10~15 ℃,总渣量减少30%~40%,同时可降低铁损,减少对环境的污染;对于脱碳渣,每炉回收热态渣20 t,可节约石灰3.2 t,若铁水硅质量分数小于0.15%,脱磷炉可不加石灰,钢铁料消耗相应减少2.4 kg/t,并且可取消萤石及轻烧的使用,可实现脱磷炉零辅料消耗;对于钢包铸余,通过控制高炉出铁量,将精炼工序RH/LF/CAS产生的热态精炼渣及钢包铸余兑入半钢包,连同半钢一起兑入脱碳炉中进行冶炼,铸余钢回包次数可达到6~8次,实现液态铸余直接回收。  相似文献   

5.
本文叙述了半钢冶炼生产低磷钢的三种不同的操作方法。通过分析转炉脱磷反应的冶金条件,通过调整炉渣碱度、熔池搅拌强度、出钢温度等工艺参数,为转炉脱磷创造更为有利的条件。采用单渣法操作,石灰加入量控制在26-50kg/t,终点磷控制在0.025%以内,一次合格比例达到99.6%;采用双渣法冶炼低磷钢,石灰加入量控制在50-70kg/t,终点磷控制在0.015%以内,一次合格比例达到98.4%;采用脱磷一脱碳双联工艺,终点磷控制在0.010%以内,一次合格比例达到97.6%,为冶炼不同钢种的控磷操作提供了不同的工艺路径,实现了品种钢磷含量的分级控制。  相似文献   

6.
转炉渣作为炼钢工艺的副产品,具有极大的综合利用潜力,但磷元素富集限制了在炉内循环利用。基于溅渣护炉过程中进行熔渣气化脱磷操作,在实验室开展焦炭还原转炉渣气化脱磷热态试验。研究结果表明:留渣碱度在2.81~3.71时,气化脱磷渣的磷分配比随炉渣碱度的升高而增大;留渣的FeO质量分数在16%~28%时,随着FeO含量的增加,气化脱磷渣的磷分配比增大。气化脱磷渣具备一定的脱磷能力,在脱磷阶段的理论成渣路线应遵循高FeO含量,碱度先由高到低,然后缓慢增加,成渣过程中理论渣系控制在R=1.55~3.17,w(FeO)=28%~46%。采用该成渣路线进行生产实践,终点钢水磷质量分数降低了0.006百分点,钢铁料消耗降低了4 kg/t,渣料消耗降低了4.6 kg/t,既保证了高效脱磷,又降低了冶炼成本。  相似文献   

7.
溅渣护炉过程加入焦末可使熔渣中P元素以气态形式脱除,在河钢集团承钢公司进行了半钢熔渣气化脱磷循环利用工业试验,研究结果表明:炼钢温度下气化脱磷初始产物以P_2气体存在;半钢熔渣气化脱磷后循环利用不会影响后续炉次的脱磷效果,试验炉次终点钢水磷质量分数均值在0.019%,满足冶炼需求;气化脱磷熔渣循环利用可减少石灰消耗约6.35 kg/t,减少比例为24.73%;气化脱磷炉渣主要物相组成为硅酸盐相、RO相,P主要富集在C_2S相(硅酸二钙)中,炉渣含有部分未反应的焦末。  相似文献   

8.
阐述了脱磷炉相关工艺研究以及与常规转炉冶炼时的主要技术指标对比情况。主要工艺有少渣高效冶炼工艺、底吹系统优化,底吹深脱磷工艺、底吹可视化工艺,转炉终点静止脱碳工艺。技术指标对比分析结果显示:脱磷炉终点平均磷含量为O.014%,常规转炉终点平均磷含量为0.019%,脱磷炉脱磷效果明显;脱磷炉石灰消耗控制在41.45kg/t,常规转炉石灰消耗控制在53.27kg/t;脱磷炉终点渣中平均TFe含量为11.73%,常规转炉终点渣中平均TFe含量为14.38%,脱磷炉金属收得率高;脱磷炉平均终点钢水残锰0.102%,常规转炉平均出钢残锰0.075%,脱磷炉合金消耗少;脱磷炉平均喷溅渣量为3.93kg/t,常规转炉平均喷溅渣量为13.23kg/t,脱磷炉过程控制平稳,金属损耗少;脱磷炉冶炼钢水终点碳氧积为0.002129,常规转炉冶炼钢水终点平均碳氧积为0.002659。脱磷炉控制水平较好。  相似文献   

9.
《炼钢》2014,(3)
介绍了复吹转炉两炉双联法工艺在福建三钢闽光股份有限公司高碳钢生产中的应用,分别探讨了脱磷炉和脱碳炉的冶炼工艺参数和应用效果。脱磷炉顶吹供氧强度为2.0~2.7 m3/(t·min),冶炼时间7~10 min,石灰加入量平均为33.3 kg/t,平均炉渣碱度为1.51,底吹供气强度0.25m3/(t·min),温度控制在1 330~1 351℃。脱磷炉半钢平均磷质量分数为0.028 4%,平均碳质量分数为3.04%,平均脱磷率可达67.7%。脱碳炉采用少渣冶炼和高拉碳操作,供氧强度4.0m3/(t·min),底搅供气强度0.13 m3/(t·min),石灰平均加入量为13.8 kg/t,脱碳炉一倒钢水平均磷质量分数为0.013%,平均碳质量分数为0.21%,实现了低磷、高碳出钢的冶金效果。脱碳炉采用锰矿熔融还原工艺,锰矿加入量为4~6 kg/t,平均锰回收率可达46.3%,高拉碳条件下终点平均锰质量分数可达0.303%。复吹转炉两炉双联法冶炼工艺应用于高碳钢生产,实现了低磷、高碳出钢和锰矿的熔融还原,达到了预期的冶炼效果。  相似文献   

10.
为去除转炉渣中的磷,实现转炉渣在转炉内的循环利用,从而达到降低冶炼成本的目的,针对顶底复吹转炉炼钢生产,结合气化脱磷热力学理论分析,研究了不同因素对脱磷率的影响。结果表明,在炼钢温度下用碳质脱磷剂还原炉渣中P2O5是可行的,选择碳质还原剂更合理。转炉熔渣脱磷率与熔渣温度、还原剂加入量、渣中FeO质量分数存在明显关系,3个参数的取值分别为1 660~1 670 ℃、150~200 kg和20%时,熔渣的脱磷率可以达到30%以上。生产实践表明,转炉熔渣的炉内循环利用可以降低石灰消耗3.29 kg/t、钢铁料消耗2.94 kg/t、炼钢成本5.48元/t。  相似文献   

11.
赵成林  张宁  朱晓雷  张维维  王丽娟 《钢铁》2015,50(12):110-113
 LF热态渣的循环利用可减少废渣排放,降低对环境的危害。对LF热态循环渣的脱硫能力及可回收性进行了分析,热态循环渣返回LF炉和转炉参与冶金反应后,可大幅降低渣料消耗,LF炉每罐回收热态循环渣1~1.5 t,平均节省石灰及其他助溶剂用量5 kg/t(钢),转炉每罐回收热态循环渣3~5 t,渣料消耗平均降低10~15 kg/t(钢)。采用热态循环渣配加石灰的LF炉造渣制度后,在相同的处理时间内,处理终点钢水中硫质量分数与常规处理几乎相同,同时节省了能源消耗,但必须考虑对钢水增硅、增锰的影响。热态循环渣返回转炉后导致入炉铁水温度低及吹炼过程渣量较大,因此转炉吹炼全程以低枪位操作更为适宜。在不影响生产组织的情况下,热态渣以返回转炉循环利用为最佳途径。  相似文献   

12.
孟华栋  杨勇  姚同路 《中国冶金》2006,32(7):107-113
为了达到节能降耗的目的,在转炉及KR进行钢包热态铸余渣循环利用的工艺试验。对比分析了转炉及KR循环利用钢包热态铸余渣前后的成渣效果和冶金效果。结果表明,在不需要对现有装备进行改造的情况下,常规炉次每炉加入约30 kg/t的钢包热态铸余渣,可节约消耗钢铁料12 kg/t、石灰4.31 kg/t、烧结矿4.87 kg/t、氧气1.83 m3/t,缩短冶炼时间3.24 min/炉,节省冶炼成本39.43 元/t(钢),降低终点a[O]含量,提高终点脱磷率,在提高钢水质量和冶炼效率、降低炼钢成本的同时,减轻了钢包铸余渣排放对环境的污染,经济效益和社会效益良好。为减小钢包铸余渣中硫含量高对转炉冶炼效果的影响,可采用将钢包热态铸余渣返回KR进行铁水预处理的方式加以循环利用,每罐铁水中加入约27 kg/t的钢包热态铸余渣后,石灰等脱硫剂用量减少82.2%,铁水预处理时间缩短1 min,温降减少4 ℃,回磷率降低2个百分点,脱硫率达到69.4%,同样取得了良好效果。  相似文献   

13.
孟华栋  杨勇  姚同路 《中国冶金》2022,32(7):107-113
为了达到节能降耗的目的,在转炉及KR进行钢包热态铸余渣循环利用的工艺试验。对比分析了转炉及KR循环利用钢包热态铸余渣前后的成渣效果和冶金效果。结果表明,在不需要对现有装备进行改造的情况下,常规炉次每炉加入约30 kg/t的钢包热态铸余渣,可节约消耗钢铁料12 kg/t、石灰4.31 kg/t、烧结矿4.87 kg/t、氧气1.83 m3/t,缩短冶炼时间3.24 min/炉,节省冶炼成本39.43 元/t(钢),降低终点a[O]含量,提高终点脱磷率,在提高钢水质量和冶炼效率、降低炼钢成本的同时,减轻了钢包铸余渣排放对环境的污染,经济效益和社会效益良好。为减小钢包铸余渣中硫含量高对转炉冶炼效果的影响,可采用将钢包热态铸余渣返回KR进行铁水预处理的方式加以循环利用,每罐铁水中加入约27 kg/t的钢包热态铸余渣后,石灰等脱硫剂用量减少82.2%,铁水预处理时间缩短1 min,温降减少4 ℃,回磷率降低2个百分点,脱硫率达到69.4%,同样取得了良好效果。  相似文献   

14.
为掌握石灰石造渣和石灰造渣炼钢在工艺能耗方面的不同,在300 t转炉开展石灰石造渣炼钢试验,并从煤气、蒸汽回收及钢渣产生角度进行能耗对比。结果表明,石灰石造渣与石灰造渣炼钢相比,在废钢加入量减少71.6 kg/t的前提下,煤气(CO)回收量提高21.5 m3/t,蒸汽回收量提高28.0 kg/t,钢渣量减少31.4 kg/t。从石灰类熔剂能耗、煤气和蒸汽回收产生的能量及钢渣产生能耗角度对比,两者的能耗平均分别为-38.9、-23.9 kg/t,前者较后者最大节能降耗23.3 kg/t,最小节能降耗9.5 kg/t,平均节能降耗15.0 kg/t。  相似文献   

15.
段建平 《特殊钢》2015,36(5):21-23
为降低AOD精炼的渣料和还原剂硅铁用量,对高铬钢液脱碳及还原过程渣碱度控制进行热力学分析,并进行45 t AOD冶炼304不锈钢造渣工艺试验。试生产结果表明,降低AOD精炼304不锈钢脱碳期炉渣碱度可减少钢水铬的氧化,同时有效减少AOD精炼渣料和还原剂消耗;AOD精炼过程石灰加入量平均从104.2 kg/t降至84.2~93.1 kg/t时,脱碳期炉渣碱度由平均13.44降低到10.64,AOD冶炼过程石灰、萤石、硅铁单耗分别平均降低14.7、5.4、4.4 kg/t,钢中Cr收得率、Ni收得率和硫含量分别为99.0%、98.3%和0.0025%。  相似文献   

16.
低锰钢一般要求控制转炉终点[Mn]≤0.05%,针对传统双渣工艺熔剂消耗成本高,留渣双渣工艺去锰不稳定的问题,基于热力学、动力学分析和现场数据分析,研究了碱度炉渣(R 1.68~2.00)、温度(1340~1460℃)及渣中FeO含量(FeO)(15.5%~18.7%)对留渣双渣工艺中炉渣去锰能力的影响。通过溅渣留渣期间加入部分石灰石,吹炼开始加入少量生白云石替代部分轻烧白云石和加入少量萤石以及吹炼初期采用较高枪位,加强熔池上层炉渣搅拌加速初期锰的氧化等措施,使终点[Mn]由≤0.06%降至≤0.045%,与传统双渣法比较,减少石灰用量6.5 kg/t,减少萤石1.48 kg/t,铁皮单耗降低6.42 kg/t,明显降低冶炼熔剂成本。  相似文献   

17.
对首秦100t转炉石灰石代替石灰造渣炼钢的试验结果进行研究分析。研究结果表明:石灰石造渣炼钢工艺在转炉单渣法和双渣法均取得良好冶炼效果,较石灰造渣工艺,在入炉CaO质量减少28.6%的情况下,脱磷率均值达到85.69%,提高2.54%,渣中磷元素分布均匀;同时石灰石代替石灰造渣可以减少入炉造渣料用量,吨钢减少转炉渣量15kg;石灰石代替石灰入炉可以增加转炉煤气回收量。  相似文献   

18.
通过15 kg真空感应炉试验得出CaO基脱磷渣系中分别添加Li2O、CaF2、Na2O、K2O后均有明显的脱磷效果,其中Li2O含量5%~10%时脱磷效果最佳。120 t顶底复吹转炉双渣操作的工业试验结果表明,脱磷前期在加31.46 kg/t石灰、3.70 kg/t白云石和0.70 kg/t烧结矿的基础上添加13.88 kg/t锂云母矿(/%:56.41SiO2,3.80FeO,4.50Na2O,4.17K2O,3.18Li2O)较未加锂云母矿的渣料(34.58 kg/t石灰,5.41 kg/t白云石,3.13 kg/t的烧结矿)转炉终点渣氧化性低,转炉半钢的脱磷率和磷平衡分配比的平均值分别是未加锂云母矿的1.67倍和2.81倍,转炉终点的脱磷率和磷平衡分配比的平均值是未加锂云母矿的1.02倍和1.47倍,与未加锂云母矿相比,转炉吹炼终点[P]可由0.009%~0.011%降低到0.005%~0.006%,能够满足超低磷钢生产要求。  相似文献   

19.
试验研究了转炉冶炼SCM435钢时留渣操作(留渣分数1/3~2/3渣量)对石灰加入量、平衡碱度的留渣炉数和终渣碱度的影响,总结了留渣操作的注意事项。80 t转炉实施留渣操作后,留渣率达到68.9%,成品P含量≤0.015%的比例比从留渣前的49.3%提高到62.2%,同时石灰消耗降低了4.5 kg/t、每炉渣中铁损失减少230 kg。  相似文献   

20.
 针对电弧炉炼钢过程中石灰消耗较高、炉渣中FeO含量过高的问题,研究了温度、炉渣成分、渣量、流渣时机对脱磷的影响以及终点碳含量、炉渣的碱度、吹氧强度对终点渣中FeO含量的影响,并对吹氧制度、造渣制度进行了优化。工业应用表明:石灰的消耗从每吨铁34. 3kg降到25. 2kg,氧气的消耗从每吨铁48. 2m3降到42. 5m3,终渣中w(FeO)从33. 4%降到25. 1%,终点w[C]从0. 07%提高到0. 15%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号