where W is the wear volume (depth), K the wear coefficient, P the contact pressure, S the slippage.And then the stress intensity factor for cracking due to fretting fatigue was calculated by using contact pressure and frictional stress distributions, which were analyzed by the finite element method. The SN curves of fretting fatigue were predicted by using the relationship between the calculated stress intensity factor range (ΔK) with the threshold stress intensity factor range (ΔKth) and the crack propagation rate (da/dN) obtained using CT specimens of the material. And then fretting fatigue tests were conducted on Ni–Cr–Mo–V steel specimens. The SN curves of our experimental results were in good agreement with the analytical results obtained by considering fretting wear process. Using these estimation methods we can explain many fretting troubles in industrial fields.  相似文献   

12.
The effect of fretting on the fatigue behaviour of plasma nitrided stainless steels     
C Allen  C.X LiT Bell  Y Sun 《Wear》2003,254(11):1106-1112
The plain fatigue and fretting fatigue behaviour of a plasma nitrided dual phase stainless steel known as 3CR12 and an AISI 316 austentic stainless steel have been studied in the present work, using a modified Wohler rotating-bending configuration. Test specimens were produced at two nitriding temperatures, namely 400 and 520 °C, representing low temperature and conventional nitriding temperature, respectively. The test results demonstrate that both nitriding processes can enhance the plain fatigue limit of these steels by approximately 10-25%, with the high temperature process being slightly more effective. Under fretting fatigue conditions, the beneficial effect of plasma nitriding is even more significant and the fretting fatigue limit is increased between 50 and 100% for 3CR12 and at least 50-150% for the AISI steel as the nitriding temperature is raised from 400 to 520 °C.  相似文献   

13.
Fretting and fretting corrosion behavior of novel micro alloyed rail steels     
Bijayani Panda  R. Balasubramaniam  Sujata Mahapatra  Gopal Dwivedi 《Wear》2009,267(9-10):1702-1708
The fretting behavior of two novel rail steels of composition Cu–Ni and Cr–Cu–Ni has been studied and compared with that of C–Mn and Cu–Mo rail steels. The rail steels were fretted in dry condition and in 3.5% NaCl solution. All the four rail steels exhibited similar fretting behavior in dry condition. The morphological features of the wear scar surface indicated delamination process as the main wear mechanism. The wear damage in 3.5% NaCl was lower compared to that in dry condition for all the rail steels due to lubricating effect of the solution. Fretting in presence of 3.5% NaCl resulted in lower wear volume for Cu–Ni and Cr–Cu–Ni rail steels. The friction coefficient for Cr–Cu–Ni rail steel was lower than that of C–Mn, Cu–Mo and Cu–Ni rail steels. Scanning electron microscopy (SEM) showed better adherence of tribo-electro-chemical layers formed on Cu–Ni and Cr–Cu–Ni rail steel than the C–Mn and Cu–Mo rail steels. This has been related to the improved fretting corrosion behavior of Cu–Ni and Cr–Cu–Ni rail steels.  相似文献   

14.
An experimental study on bending fretting fatigue characteristics of 316L austenitic stainless steel     
J.F. PengC. Song  M.X. ShenJ.F. Zheng  Z.R. ZhouM.H. Zhu 《Tribology International》2011,44(11):1417-1426
Bending fretting fatigue tests of 316L austenitic stainless steel plates against 52100 steel cylinders have been carried out under same normal load and varied bending loads. Tests of plain bending fatigue were carried out as a control group. The S-N curves of the bending fatigue were made. The results indicated that there was an obvious drop of life under the condition of bending fretting fatigue due to higher local contact stress. A dislocation model of micro-crack nucleation mechanism, as a manner of zig-zag mode, was created to explain the nucleation of fretting fatigue cracks.  相似文献   

15.
The effect of hydrogen gas environment on fretting fatigue strength of materials used for hydrogen utilization machines   总被引:1,自引:0,他引:1  
Masanobu Kubota  Yasuhiro Tanaka 《Tribology International》2009,42(9):1352-1359
The objective of this study is the characterization of the fretting fatigue strength in a hydrogen gas environment. The test materials were a low alloy steel SCM435H, super alloy A286 and two kinds of austenitic stainless steels, SUS304 and SUS316L. The test was performed in hydrogen gas at 0.12 MPa absolute pressure. The purity of the hydrogen gas was 99.9999%. The fretting fatigue limit was defined by the fretting fatigue strength at 30 million cycles. For all materials, the fretting fatigue strength in the hydrogen gas environment increased in the short-life region. However, the fretting fatigue strength in the hydrogen gas environment decreased in the long-life region when exceeding 10 million cycles except for SCM435H, while there was no reduction in the fretting fatigue strength in air between 10 and 30 million cycles. The reduction rate was 18% for A286, 24% for SUS304 and 7% for SUS316L. The tangential force coefficient in the hydrogen gas environment increased when compared to that in air. It can be estimated that this increase is one of the causes of the reduced fretting fatigue strength found in a hydrogen gas environment. In order to discuss the extension of the fretting fatigue life in hydrogen gas observed at the stress level above the fretting fatigue limit in air, continuous measurement of the fretting fatigue crack propagation was performed in a hydrogen gas environment using the direct current potential drop method. As a result, it was found that the extension of the fretting fatigue life was caused by the delay in the start of the stable crack propagation.  相似文献   

16.
Influence of temperature on a low-cycle fatigue behavior of a ferritic stainless steel     
S. M. Humayun Kabir  Tae-in Yeo 《Journal of Mechanical Science and Technology》2014,28(7):2595-2607
The main objective of this study is to reveal the effect of dynamic strain ageing (DSA) on a ferritic stainless steel with detail relation to monotonic and cyclic responses over a wide range of temperatures. For assessing the effect of strain rate on mechanical properties, tensile test results are studied at two different strain rates of 2×10?3/s and 2×10?4/s. Typical responses of this material are compared with other alloy in literatures that exhibits DSA. Serrations in monotonic stress-strain curves and anomalous dependence of tensile properties with temperatures are attributed to the DSA effect. The low cycle fatigue curves exhibit prominent hardening and negative temperature dependence of half-life plastic strain amplitude in temperatures between 300°C–500°C which can be explained by DSA phenomenon. The regime for dependence of marked cyclic hardening lies within the DSA regime of anomalous dependence of flow stress and dynamic strain hardening stress with temperature and negative strain rate sensitivity regime of monotonic response. It is believed that shortened fatigue life observed in the intermediate temperature is mainly due to the adverse effect of DSA. An empirical life prediction model is addressed for as-received material to consider the effect of temperature on fatigue life. The numbers of load reversals obtained from experiment and predicted from fatigue parameter are compared and found to be in good agreement.  相似文献   

17.
尿素级不锈钢316LMOD板材的研制     
李国平  张威  范新智  李俊 《压力容器》2012,29(7):56-60
尿素级不锈钢是尿素高压设备上广泛应用的不锈钢材料,由于使用环境条件恶劣,因此要求不锈钢具有良好的耐均匀腐蚀、晶界腐蚀和选择性腐蚀性能。主要从成分设计(在普通316L的基础上提高Cr,Ni,Mo),热处理制度对组织中第二相比例的影响规律进行研究,并利用扫描、透射电镜对第二相进行确认,最终研制成功各项性能满足尿素级不锈钢设计标准的316LMOD尿素级不锈钢板材。  相似文献   

18.
Effect of contact pressure on fretting fatigue of austenitic stainless steel     
Kozo Nakazawa  Norio Maruyama  Takao Hanawa 《Tribology International》2003,36(2):79-85
The effect of contact pressure on fretting fatigue in solution-treated austenitic stainless steel was studied. With an increase in contact pressure, fretting fatigue life was almost unchanged at low contact pressures, however it decreased drastically at high contact pressures. At low contact pressures, stress concentration due to fretting damage occurred at the middle portion of the fretted area and the main crack responsible for failure was initiated there. At high contact pressures, concavity was formed at the fretted area without accompanying heavy wear. The main crack was initiated at the outer edge corner of the concavity which probably acted as a notch. Plain fatigue prior to the fretting fatigue test increased the fretting fatigue life at high contact pressures since the concavity formation was suppressed by the cyclic strain hardening.  相似文献   

19.
316LN不锈钢低速率应变下的热变形行为     
裴海祥  侯华  李大赵  闫锋 《测试科学与仪器》2017,8(2)
目前, 对316LN不锈钢在低速率应变下的热变形行为研究很少. 本文选用工业316LN不锈钢, 通过Gleeble-3800热模拟试验机进行了600-1 100 ℃温度下, 应变速率为3×10-3 s-1的热压缩试验, 得到了真应力-应变曲线. 通过分析真应力-应变曲线和试样的微观组织, 得到了如下结论: 1 000 ℃和稍高温度是适于低速率应变下316LN不锈钢加工的温度.  相似文献   

20.
Influence of soft surface modification on rolling contact fatigue strength of machine element   总被引:1,自引:0,他引:1  
A. Yoshida  M. Fujii   《Tribology International》2002,35(12)
Various surface modification methods have been employed in order to improve the tribological performance of machine elements. In this work, electroless Ni–P alloy plating and sulfurizing treatments were employed, and the surface modified steel rollers and ball bearings were fatigue-tested under a pure or free rolling contact condition. The fatigue lives of both rollers and bearings were improved by these surface modifications. The contact pressure and subsurface stresses of the surface modified rollers and bearings were analyzed. The reason why the rolling fatigue strengths of surface modified rollers and bearings were higher than those of the non-coated ones would be due to the smaller contact pressure and subsurface stresses by the smaller elasticity as well as the conformity of the plated layer.  相似文献   

  首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
J.A. Pape  R.W. Neu   《Tribology International》2007,40(7):1111-1119
The results of fretting fatigue experiments performed on two high-strength structural steels, PH 13-8 Mo stainless steel and quenched and tempered 4340 steel, are evaluated. Observations regarding the subsurface deformation and cracking behavior of the steels are compared and contrasted. It was found that the fretting stresses influenced early crack growth to a greater depth in PH 13-8 Mo stainless steel than in 4340 steel. In addition, experiments on PH 13-8 Mo led to the development of a region below the fretting scar that underwent a microstructural transformation, while experiments on 4340 steel did not. Likely reasons for this discrepancy are suggested. Differences in the formation of oxide layers and the occurrence of adhesion between the two materials are also discussed.  相似文献   

2.
This study investigates the effects of thickness, hardness and composition of modified layer on the plain and fretting fatigue properties of the nitrided 316 L steel plasma nitrided under various processing conditions. Fretting fatigue behaviour of untreated and nitrided material is also analysed with the finite element method. Experimental and theoretical fatigue life results are compared. The result indicates that the nitriding process improved the fretting fatigue properties of 316 L stainless steel. The experimental test results are close to theoretical fretting fatigue life results, thus it yields that the established model in the numerical analysis is consistent in this regard.  相似文献   

3.
新的多轴非比例加载低周疲劳寿命估算公式   总被引:3,自引:0,他引:3  
利用对 3 16L不锈钢多轴非比例加载低周疲劳的试验结果 ,对现有的多轴低周疲劳寿命估算方法进行讨论 ;基于 3 16L不锈钢非比例加载低周疲劳的微观机理 ,选择最大剪应变以及应变路径的非比例度作为损伤参量 ,建立基于临界面方法的新的非比例加载低周疲劳寿命估算公式 ;利用新的非比例加载低周疲劳寿命估算公式对寿命的预测结果表明 ,新的寿命估算公式对剪切型破坏的 3 16L与 3 16LN不锈钢及拉伸型破坏的 3 0 4不锈钢非比例加载低周疲劳寿命预测精度比现有的临界面方法高  相似文献   

4.
通过不同应变速率的拉伸试验,研究了316L不锈钢在不同温度和浓度的NaOH溶液中的应力腐蚀开裂行为,分析了以上三个因素对该钢应力腐蚀开裂的影响.结果表明:当应变速率为10-5s-1时,316L不锈钢不会发生明显的应力腐蚀开裂,而当应变速率降低到10-6s-1时,在高温低浓度的NaOH溶液中该钢会发生明显的应力腐蚀开裂;当应变速率为10-6s-1时,NaOH溶液温度对316L不锈钢应力腐蚀开裂的影响程度要高于浓度的.  相似文献   

5.
《Tribology International》2012,45(12):1979-1986
This study investigates the effects of thickness, hardness and composition of modified layer on the plain and fretting fatigue properties of the nitrided 316 L steel plasma nitrided under various processing conditions. Fretting fatigue behaviour of untreated and nitrided material is also analysed with the finite element method. Experimental and theoretical fatigue life results are compared. The result indicates that the nitriding process improved the fretting fatigue properties of 316 L stainless steel. The experimental test results are close to theoretical fretting fatigue life results, thus it yields that the established model in the numerical analysis is consistent in this regard.  相似文献   

6.
不锈钢多轴非比例加载低周疲劳的研究   总被引:10,自引:0,他引:10  
对316L不锈钢进行了单轴及多轴非比例加载低周疲劳试验及其微结构的观察,分析了非比例循环附加强化及低周疲劳寿命对应变路径依赖性的微观机理,基于微观机理的研究结果,以位错结构特征参量的统计平均值给出了加载路径的非比例度定义,建立了新的多轴非比例加载低周疲劳寿命估算公式。  相似文献   

7.
通过对316不锈钢材料在450℃,600℃和700℃中温环境应力控制下的低周疲劳试验,得到有实际意义的试验结果,对这些试验结果进行分析和研究,得出316不锈钢材料在中温环境和应力控制下的低周热疲劳行为,并且提出一个低周热疲劳寿命预测模型。在所建立的低周热疲劳寿命模型中,Manson通用斜率方程被用于疲劳寿命与拉伸性能的试验整合。通过对疲劳试验数据与不同的数学模型进行的拟合以建立温度和其他参数之间的函数关系,从而对316不锈钢材料在中温低周疲劳环境下进行寿命预测,为以后的寿命评估模型提供依据。  相似文献   

8.
Alicja Krella  Andrzej Czy niewski 《Wear》2006,260(11-12):1324-1332
Results of investigation on cavitation-erosion resistance of Cr–N coating deposited on stainless steel X6CrNiTi18-10 (1H18N9T) by means of the cathodic-arc method are presented. The evaluation of Cr–N coating resistance to cavitation erosion is based on the investigation performed in a cavitation tunnel with a slot cavitator and tap water as a medium. The investigation was performed at variable-cavitation intensity and the estimated cavitation resistance parameters of coatings were the incubation period of damage and the instantaneous erosion rate after exposure of specified duration. It has been confirmed that the incubation period of the Cr–N coating damage is approximately 50% longer than that of the uncoated X6CrNiTi18-10 steel, and the instantaneous erosion rate after exposure of specified duration is comparable in both cases. The scanning microscope analysis indicates that the damage of Cr–N coating is due mainly to its delamination, while the erosion of deeper parts of the coating is of minor importance. The character of the coating and substrate damage in multiple locations indicates that the hard coating microparticles torn-off during the cavitation bubbles implosion hit against the coating and the revealed areas of substrate. As a result, the coating and especially the substrate of relatively low hardness are subject to cavitation erosion and to solid particle erosion with the hard torn-off microparticles of coating. The results of the investigation and the analysis indicate that the factors mainly responsible for a long incubation period and low cavitation erosion rate of the steel substrate/hard coating systems are the gained high hardness of substrate and high level of coating adhesion.  相似文献   

9.
Low temperature nitriding of stainless steel leads to the formation of a surface zone of so-called expanded austenite, i.e. by dissolution of large amounts of nitrogen in solid solution. In the present work the possibility of using nitrogen expanded austenite “layers” obtained by gaseous nitriding of AISI 316 as substrate for DLC coatings are investigated. Corrosion and erosion–corrosion measurements were carried out on low temperature nitrided stainless steel AISI 316 and on low temperature nitrided stainless steel AISI 316 with a top layer of DLC. The combination of DLC and low temperature nitriding dramatically reduces the amount of erosion–corrosion of stainless steel under impingement of particles in a corrosive medium.  相似文献   

10.
C. Katsich  E. Badisch  Manish Roy  G.R. Heath  F. Franek   《Wear》2009,267(11):1856-1864
Many engineering components are subjected to erosive wear at elevated temperature. As erosive wear at elevated temperature is governed by the synergistic effect of erosive wear and oxidation, it is possible to modify surfaces of the components in order to achieve improved performances. In view of the above, two different types of hardfacing alloys of Fe–Cr–C were designed incorporating Nb, Mo and B to ensure improved performances at elevated temperature. In order to achieve the above objective, mild steel was hardfaced with these alloys under optimised gas metal arc welding (GMAW) condition. The microstructures of the hardfaced coating was characterised with the help of optical microscopy (OM) and scanning electron microscopy (SEM). The mechanical properties of these coatings were obtained by means of micro indenter. Erosive wear of these coatings was evaluated for four different temperatures, for two different impact angles and at one impact velocity. The morphologies and the transverse sections of the worn surfaces are examined with SEM. The erosive wear of these coatings were compared with conventional M2 tool steel. Results indicate that erosion rate of these coatings increases with increase of test temperature and impact angles. Among various coatings, Fe–Cr–C coating containing higher amount of Nb, Mo and B exhibits best erosion resistance particularly at elevated temperature.  相似文献   

11.
Fretting fatigue strength estimation considering the fretting wear process   总被引:1,自引:0,他引:1  
In fretting fatigue process the wear of contact surfaces near contact edges occur in accordance with the reciprocal micro-slippages on these contact surfaces. These fretting wear change the contact pressure near the contact edges. To estimate the fretting fatigue strength and life it is indispensable to analyze the accurate contact pressure distributions near the contact edges in each fretting fatigue process.So, in this paper we present the estimation methods of fretting wear process and fretting fatigue life using this wear process. Firstly the fretting-wear process was estimated using contact pressure and relative slippage as follows:
W=K×P×S,
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号