首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以纳米二氧化硅(nano-SiO2)表面包覆的微晶纤维素(MCC)为填料,采用熔融共混的方法制备了聚乳酸/聚丁二酸丁二醇酯(PLA/PBS)复合材料。运用扫描电子显微镜、热重分析仪、差示扫描量热仪、动态热力学分析仪等方法研究了nano-SiO2对PLA/PBS/MCC复合材料的力学性能、热稳定性以及结晶行为的影响。结果表明,nano-SiO2包覆在MCC表面后与PLA/PBS熔融共混提高了nano-SiO2在聚合物材料中的分散性,改善了MCC与树脂基体的相容性;添加5 %(质量分数,下同)MCC的PLA/PBS/MCC复合材料,与同样添加量的PLA/PBS/nano-SiO2-MCC复合材料相比,其储能模量、冲击强度以及结晶度分别提高了13.04 %、11.70 %、71.92 %。  相似文献   

2.
以微晶纤维素(MCC)作为改性剂,马来酸酐接枝聚乳酸(PLA g MAH)为界面相容剂,聚乳酸(PLA)、聚碳酸亚丙酯(PPC)为基体,通过熔融共混法制得PLA/PPC/MCC三元复合材料。采用控温拉伸、动态热分析、扫描电子显微镜以及热失重分析等方法研究了MCC对PLA/PPC的力学性能和热稳定性。结果表明,PLA/PPC/MCC三元复合材料的拉伸强度提高了12.7 %,玻璃化转变温度(Tg)提高了9.8 ℃;PLA g MAH的加入可以改善PLA/PPC/MCC三元复合材料的界面性质,从而提高力学性能和热稳定性;当PLA g MAH的添加量为5 %(质量分数,下同)时,三元复合材料在常温下的拉伸强度、弯曲强度和冲击强度分别提高了53.7 %、43.1 %和18.5 %;在60 ℃下三元复合材料的断裂强度提高了80 %;热降解温度以及最大失重温度与PLA/PPC相比分别提高了25.31 ℃和61.83 ℃。  相似文献   

3.
利用熔融共混法制备了综合性能优良的吹膜级聚丁二酸丁二酯/聚乳酸(PBS/PLA)复合材料,并通过万能试验机、差示扫描量热分析仪、热重分析仪、透气透湿分析仪分别测试了PBS/PLA复合材料及其薄膜的力学性能、热性能、阻隔性能。结果表明,制备的PBS/PLA复合材料较纯PBS树脂具有更好的刚性,且所吹塑的薄膜与包装用低密度聚乙烯膜各项性能相当。  相似文献   

4.
以化学改性松木粉(PWF)为增强材料、聚乳酸(PLA)为基体,同时添加少量纳米二氧化硅(nano-SiO_2),通过熔融挤出制备了适用于熔融沉积成型(FDM)3D打印技术的木塑复合材料,并对该木塑复合材料的力学性能和3D打印性能进行了研究。结果表明:添加nano-SiO_2可以显著提高木塑复合材料的力学性能,随着nanoSiO_2用量的增加,PLA/PWF/nano-SiO_2木塑复合材料的各项力学性能均呈现逐渐上升的趋势,且在nanoSiO_2用量为5%时达到最佳。PWF用量对PLA/PWF/nano-SiO_2木塑复合材料各项力学性能的影响呈现先上升后下降的趋势,且材料性能在PWF用量为15%时达到最佳,此时弯曲强度为101.6 MPa、弯曲模量为4 652 MPa、拉伸强度为92.81 MPa、拉伸模量为3 845 MPa、冲击强度为4.31 kJ/m~2,相对于PLA/PWF木塑复合材料均提高了50%以上。该PLA/PWF/nano-SiO_2木塑复合材料可应用于FDM型3D打印,具有良好的打印性能。  相似文献   

5.
以微晶纤维素(MCC)为增强材料、聚乳酸(PLA)为基体,通过高温熔融共混、挤出、拉丝等流程,制备适用于熔融沉积成型(FDM)3D打印技术的MCC/PLA复合材料,并通过FDM型3D打印机打印出成品。讨论了MCC添加量对该复合材料的力学性能、热性能、微观结构以及3D打印性能的影响。研究结果表明,随着MCC添加量的增加,复合材料的力学性能呈现先增高后下降的变化趋势,当MCC添加量为3%时,其拉伸强度和弯曲强度达到最高,分别为54.55 MPa和64.25 MPa。红外分析证实了微晶纤维素与聚乳酸在熔融时发生了接枝共聚反应。热性能分析表明,添加少量MCC,可以提高复合材料的热稳定性和PLA的结晶度。MCC添加量为3%的MCC/PLA复合材料其力学性能、打印性能和外观达到最佳,可应用于FDM型3D打印技术。  相似文献   

6.
以硅烷偶联剂KH550对纳米纤维素(CNF)进行表面改性,利用双螺杆挤出机熔融共混制备一系列聚丁二酸丁二醇脂(PBS)/CNF母粒改性聚乳酸(PLA)复合材料,并在湿热老化试验箱中进行老化试验。通过扫描电子显微镜、广角X射线衍射仪、差示扫描量热仪、偏光显微镜等对复合材料的结晶和力学性能进行测试。结果表明,CNF可作为异相成核剂改善PLA的结晶行为,使PLA的结晶度提高;改性后,PBS/CNF复合母粒与PLA基体之间的相容性有较大改善;老化36 h后,PLA/PBS/CNF-KH550复合材料结晶进一步完善,其结晶度、拉伸强度和断裂伸长率较老化前分别提高了28.15 %、5.54 %和8.23 %。  相似文献   

7.
采用硅烷偶联剂(γ-甲基丙烯酰氧基丙基三甲氧基硅烷,KH-570)和纳米羟基磷灰石(n-HA)分别对微晶纤维素(MCC)表面处理.运用熔融共混方法制备改性微晶纤维素/聚乳酸(MCC/PLA)复合材料.研究了不同的MCC表面改性方法对MCC/PLA复合材料力学性能和热稳定性能的影响.结果表明:硅烷偶联剂KH-570化学包...  相似文献   

8.
《塑料》2019,(6)
通过熔融共混法制备了聚乳酸/聚丁二酸丁二醇酯/聚乙二醇(PLA/PBS/PEG)共混物,研究了PEG组分对PLA/PBS共混体系微观结构、流变性能、结晶性能、动态力学性能以及冲击性能的影响。结果表明,将PEG组分添加到PLA/PBS共混物中,能够降低PBS分散相的尺寸,均化分散相尺寸分布,增强界面结合。与PLA/PBS共混物相比,PLA/PBS/PEG共混物的复数黏度大幅度降低。由于PEG对PLA和PBS分子链同时具有增塑作用,使PLA/PBS/PEG共混物的结晶能力远大于相应的PLA/PBS共混物,最高结晶度可达17. 4%。通过测试,动态力学性能结果表明,PEG组分能够降低共混体系中PLA组分的玻璃化转变温度,并且促进PLA与PBS之间的相容性。此外,PLA/PBS/PEG共混物的冲击强度得到了显著提高,最高可达到4. 71 k J·m~(-2),比未添加PEG组分的PLA/PBS共混物提高了25. 3%。  相似文献   

9.
先通过熔融共混方法制备聚乳酸/聚丁二酸丁二醇酯(PLA/PBS)共混材料,然后将该共混材料加入微纳层叠共挤出设备中,通过该设备使PBS在PLA基体中原位成纤,制备PLA/PBS原位成纤复合材料;进一步对该原位成纤复合材料进行扫描电子显微镜、机械性能、差热量热分析等研究。结果表明,PBS在PLA基体中实现原位成纤,且PBS在低含量时也能够形成纤维,当PBS质量分数为10%时,PBS纤维的直径为1.16~1.52μm,随着PBS含量的增加,PBS纤维直径逐渐增大;PBS的加入提高了PLA的断裂伸长率,当PBS质量分数为30%时,PLA的断裂伸长率提高近300%,但降低了PLA的拉伸强度;PBS经原位成纤后,PBS的结晶度及熔融温度得到提高,PBS纤维能更好地为PLA提供一定的晶核,使得PLA的冷结晶温度降低。  相似文献   

10.
以经硅烷偶联剂(KH570)处理的微晶纤维素(MCC)为填料,三嗪系膨胀阻燃剂(CFA)与聚磷酸铵(APP)的复配体系为阻燃剂(C-IFR),聚乳酸(PLA)为基体树脂,采用熔融共混方法制备阻燃MCC/PLA复合材料,研究了MCC对阻燃PLA复合材料的力学、阻燃性能、热稳定性的影响。力学试验结果显示,MCC加入使PLA和阻燃PLA均比纯基体树脂的拉伸强度、弯曲强度有所降低,对悬臂梁缺口冲击强度影响小。MCC在小添加量时可以提高PLA复合体系的极限氧指数,MCC与APP具有的协同效应降低了PLA的燃烧速率,提高了材料的成炭性能。热降解动力学表明,MCC增加了PLA和阻燃PLA材料的活化能,提高了PLA复合材料的热稳定性,同时MCC降低PLA的玻璃化转变温度。  相似文献   

11.
采用熔融共混法制备了聚丙烯(PP)/纳米二氧化硅(nano-SiO_2)复合材料,用偏光显微镜、差示扫描量热仪研究了PP/nano-SiO_2复合材料的凝聚态结构,并用扫描电子显微镜、透射电子显微镜观察了nano-SiO_2粒子在PP中的相容性和分散性。结果表明,分散于PP中的nano-SiO_2粒子影响了PP的凝聚态结构,球晶尺寸变小,球晶边界模糊,PP的结晶和熔融温度分别增加了6.5%和2.6%;PP/nano-SiO_2复合材料在硅烷偶联剂(KH-560)与增容剂马来酸酐接枝聚丙烯(PP-g-MAH)的协同作用下,nano-SiO_2粒子在PP基体中的相容性增加,粒子与基体界面结合良好,团聚少,分散好,PP的冲击强度增加了40%。  相似文献   

12.
通过熔融开炼共混法制备了聚乳酸(PLA)/聚丁二酸丁二酯(PBS)/聚乙二醇(PEG)共混物,考察了不同加料顺序对共混物的影响。利用电子拉力试验机测试共混物的力学性能,同步热分析仪分析其热稳定性。实验证明,PLA和PBS熔融混合均匀后,再加入PEG的加料顺序,可以提高PLA/PBS/PEG共混物的韧性;PEG加入可以提高共混物的热稳定性。通过扫描电子显微镜、X射线衍射仪、偏光显微镜进一步证明,PLA和PBS熔融混合均匀后,再加入PEG的加料顺序,可以更有效地均化分散相尺寸,细化结晶粒度,降低体系的界面张力,提高两相的相容性。  相似文献   

13.
以微晶纤维素为填充剂,聚乳酸为基体,采用熔融共混法制备PLA/MCC生物降解复合材料。考察了聚甲基丙烯酸甲酯(PMMA)表面处理的微晶纤维素对复合材料性能的影响。结果表明,PMMA包覆MCC增加了弯曲强度。表面改性处理提高了MCC的热稳定性,使其加工温度提高了。  相似文献   

14.
在10%总添加量下,以乙烯-丙烯酸乙酯(EEA)和乙烯-丙烯酸正丁酯-甲基丙烯酸缩水甘油酯(E-BAGMA)复配的方式,采用双螺杆挤出机熔融共混制备了聚乳酸(PLA)/EEA/E-BA-GMA复合材料,通过万能试验机、扫描电子显微镜(SEM)、旋转流变仪、热失重分析仪等方法,研究了EEA与E-BA-GMA的复配对PLA相容性、热稳定性和力学性能的影响。结果表明,E-BA-GMA的加入,提高了PLA与EEA的界面黏附力,当E-BA-GMA添加量为3%时,复合材料的相容性较好;EEA/E-BA-GMA复配的加入,对PLA的热稳定性影响不大;EEA/E-BA-GMA复配的加入,提高了PLA的韧性,当EEA/E-BA-GMA的配比为7%/3%时,复合材料的断裂伸长率和缺口冲击强度分别从纯PLA的5.8%和2.1 k J/m~2增加到了164.3%和5.3 k J/m~2。  相似文献   

15.
研究了马来酸酐(MAH)/二乙烯基苯(DVB)接枝聚乳酸(PLA-g-DVB/MAH)对微晶纤维素(MCC)/聚乳酸(PLA)复合材料性能的影响。首先采用熔融接枝法,将DVB作为MAH的共聚单体接枝到PLA分子链上制备PLA-g-DVB/MAH接枝聚合物,然后以PLA-g-DVB/MAH为相容剂,采用注射成型法制备MCC/PLA复合材料。利用FTIR对PLA-g-DVB/MAH进行表征,探究了PLA-g-DVB/MAH对MCC/PLA复合材料流变及力学性能的影响。结果表明,MAH成功接枝到PLA上,并得到接枝聚合物PLA-g-DVB/MAH;添加PLA-g-DVB/MAH后,MCC/PLA复合材料的储能模量、复数黏度、平衡扭矩以及剪切热都有明显升高;PLA-g-DVB/MAH的添加有利于改善MCC和PLA的界面相容性,进而提高了MCC/PLA复合材料的力学性能。  相似文献   

16.
通过熔融共混法制备了一系列不同质量比的PLA/PBS复合材料,研究了不同比例的PBS对PLA的增韧效果,结果发现:加入PBS后,PLA的断裂伸长率和冲击强度都有了明显的提高。PLA与PBS的最佳配比为80/20,断裂伸长率高达428. 04%,冲击强度也由纯PLA的1. 74 k J/m2上升至3. 57 k J/m2。固定PLA/PBS的质量比为80/20,加入不同质量分数的相容剂苯乙烯-甲基丙烯酸缩水甘油酯(ADR)研究ADR对PLA/PBS复合材料增容改性的影响,结果显示:ADR的加入提高了PLA/PBS复合材料的相容性,从而使PLA/PBS复合材料的力学性能也进一步提高。当ADR含量为0. 75%时,其断裂伸长率最大,数值为535. 18%。同时,PLA/PBS复合材料的热稳定性能也更好。  相似文献   

17.
研究了马来酸酐(MAH)/二乙烯基苯(DVB)接枝聚乳酸(PLA-g-DVB/MAH)对微晶纤维素(MCC)/聚乳酸(PLA)复合材料性能的影响。首先采用熔融接枝法,将DVB作为MAH的共聚单体接枝到PLA分子链上制备PLA-g-DVB/MAH接枝聚合物,然后以PLA-g-DVB/MAH为相容剂,采用注射成型法制备MCC/PLA复合材料。利用FTIR对PLA-g-DVB/MAH进行表征,探究了PLA-g-DVB/MAH对MCC/PLA复合材料流变及力学性能的影响。结果表明,MAH成功接枝到PLA上,并得到接枝聚合物PLA-g-DVB/MAH;添加PLA-g-DVB/MAH后,MCC/PLA复合材料的储能模量、复数黏度、平衡扭矩以及剪切热都有明显升高;PLA-g-DVB/MAH的添加有利于改善MCC和PLA的界面相容性,进而提高了MCC/PLA复合材料的力学性能。  相似文献   

18.
通过熔融共混制备了聚碳酸亚丙酯(PPC)/聚丁二酸丁二醇酯(PBS)/纳米二氧化硅(nano-SiO_2)复合材料,采用扫描电镜和流变学方法研究了nano-SiO_2对复合材料共连续形貌结构的影响和复合材料形貌演变过程的动力学因素。实验结果表明,SiO_2强烈的定向聚集作用诱导分散的PBS相熔合形成连续相,当SiO_2的含量更高,形成共连续结构所需的时间更短,并且随着扫描温度和扫描频率的升高,SiO_2的定向聚集作用增强,该形貌演变过程更容易实现。  相似文献   

19.
通过熔融共混制备了聚乳酸(PLA)/聚丁二酸丁二醇酯(PBS)共混物,采用扫描电子显微镜、差示扫描量热仪、旋转流变仪对其相容性、热性能和黏度等进行了研究,并研究了PBS的加入对PLA力学性能的影响。结果表明,PLA和PBS之间是部分相容的,PBS的少量添加并不影响PLA的拉伸强度,且其冲击强度随着PBS含量的增加呈先上升后下降的趋势,当PBS含量为10份时,共混物的冲击强度最好;与纯PLA相比,共混物的黏度有所增加,且随着PBS含量的增加,共混物的黏度逐渐增大;PBS的添加起到异相成核作用,促进了PLA的结晶。  相似文献   

20.
选用玻璃纤维(GF)作为聚乳酸(PLA)基体的增韧材料,并依次用硅烷偶联剂(KH550)和油酸(OA)对玻璃纤维表面进行二次改性制得改性玻璃纤维(OKGF),并通过共混法制备出PLA/GF和PLA/OKGF复合材料。通过傅里叶变换红外光谱(FTIR)、热重分析仪(TG)和扫描电子显微镜(SEM)对改性前后的GF进行表征测试,通过SEM、差示扫描量热仪(DSC)探究了改性前后的玻璃纤维以及玻璃纤维含量对复合材料的微观形貌和热行为的影响。结果表明:油酸成功包覆在玻璃纤维表面,包覆量约占玻璃纤维质量的2%;OKGF的加入有效提高了GF与PLA基体的界面黏结性,改性玻璃纤维基本没有从基体中拔出的情况出现;PLA/OKGF复合材料的玻璃化转变温度下降1~7℃,冷结晶温度下降10~22℃,有效增强了PLA基体的结晶能力;当OKGF填充量为20%,二次升温速率为5和20℃/min时,PLA/OKGF复合材料的熔融结晶度分别达到了39.4%和39.2%,相较纯PLA分别提高了310.4%和266.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号