首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Direct air capture (DAC) is gathering momentum since it has vast potential and high flexibility to collect CO2 from discrete sources as “synthetic tree” when compared with current CO2 capture technologies, e.g., amine based post-combustion capture. It is considered as one of the emerging carbon capture technologies in recent decades and remains in a prototype investigation stage with many technical challenges to be overcome. The objective of this paper is to comprehensively discuss the state-of-the-art of DAC and CO2 utilization, note unresolved technology bottlenecks, and give investigation perspectives for commercial large-scale applications. Firstly, characteristics of physical and chemical sorbents are evaluated. Then, the representative capture processes, e.g., pressure swing adsorption, temperature swing adsorption and other ongoing absorption chemical loops, are described and compared. Methods of CO2 conversion including synthesis of fuels and chemicals as well as biological utilization are reviewed. Finally, techno-economic analysis and life cycle assessment for DAC application are summarized. Based on research achievements, future challenges of DAC and CO2 conversion are presented, which include providing synthesis guidelines for obtaining sorbents with the desired characteristics, uncovering the mechanisms for different working processes and establishing evaluation criteria in terms of technical and economic aspects.  相似文献   

2.
Chemical looping technology for capturing and hydrothermal processes for conversion of carbon are discussed with focused and critical assessments. The fluidized and stationary reactor systems using solid, including biomass, and gaseous fuels are considered in chemical looping combustion, gasification, and reforming processes. Sustainability is emphasized generally in energy technology and in two chemical looping simulation case studies using coal and natural gas. Conversion of captured carbon to formic acid, methanol, and other chemicals is also discussed in circulating and stationary reactors in hydrothermal processes. This review provides analyses of the major chemical looping technologies for CO2 capture and hydrothermal processes for carbon conversion so that the appropriate clean energy technology can be selected for a particular process. Combined chemical looping and hydrothermal processes may be feasible and sustainable in carbon capture and conversion and may lead to clean energy technologies using coal, natural gas, and biomass. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The increased level of emissions of carbon dioxide into the atmosphere due to burning of fossil fuels represents one of the main barriers toward the reduction of greenhouse gases and the control of global warming. In the last decades, the use of renewable and clean sources of energies such as solar and wind energies has been increased extensively. However, due to the tremendously increasing world energy demand, fossil fuels would continue in use for decades which necessitates the integration of carbon capture technologies (CCTs) in power plants. These technologies include oxycombustion, pre‐combustion, and post‐combustion carbon capture. Oxycombustion technology is one of the most promising carbon capture technologies as it can be applied with slight modifications to existing power plants or to new power plants. In this technology, fuel is burned using an oxidizer mixture of pure oxygen plus recycled exhaust gases (consists mainly of CO2). The oxycombustion process results in highly CO2‐concentrated exhaust gases, which facilitates the capture process of CO2 after H2O condensation. The captured CO2 can be used for industrial applications or can be sequestrated. The current work reviews the current status of oxycombustion technology and its applications in existing conventional combustion systems (including gas turbines and boilers) and novel oxygen transport reactors (OTRs). The review starts with an introduction to the available CCTs with emphasis on their different applications and limitations of use, followed by a review on oxycombustion applications in different combustion systems utilizing gaseous, liquid, and coal fuels. The current status and technology readiness level of oxycombustion technology is discussed. The novel application of oxycombustion technology in OTRs is analyzed in some details. The analyses of OTRs include oxygen permeation technique, fabrication of oxygen transport membranes (OTMs), calculation of oxygen permeation flux, and coupling between oxygen separation and oxycombustion of fuel within the same unit called OTR. The oxycombustion process inside OTR is analyzed considering coal and gaseous fuels. The future trends of oxycombustion technology are itemized and discussed in details in the present study including: (i) ITMs for syngas production; (ii) combustion utilizing liquid fuels in OTRs; (iii) oxy‐combustion integrated power plants and (iv) third generation technologies for CO2 capture. Techno‐economic analysis of oxycombustion integrated systems is also discussed trying to assess the future prospects of this technology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
The outlook for improved carbon capture technology   总被引:1,自引:0,他引:1  
Carbon capture and storage (CCS) is widely seen as a critical technology for reducing atmospheric emissions of carbon dioxide (CO2) from power plants and other large industrial facilities, which are major sources of greenhouse gas emissions linked to global climate change. However, the high cost and energy requirements of current CO2 capture processes are major barriers to their use. This paper assesses the outlook for improved, lower-cost technologies for each of the three major approaches to CO2 capture, namely, post-combustion, pre-combustion and oxy-combustion capture. The advantages and limitations of each of method are discussed, along with the current status of projects and processes at various stages in the development cycle. We then review a variety of “roadmaps” developed by governmental and private-sector organizations to project the commercial roll-out and deployment of advanced capture technologies. For perspective, we also review recent experience with R&D programs to develop lower-cost technologies for SO2 and NOx capture at coal-fired power plants. For perspective on projected cost reductions for CO2 capture we further review past experience in cost trends for SO2 and NOx capture systems. The key insight for improved carbon capture technology is that achieving significant cost reductions will require not only a vigorous and sustained level of research and development (R&D), but also a substantial level of commercial deployment, which, in turn, requires a significant market for CO2 capture technologies. At present such a market does not yet exist. While various incentive programs can accelerate the development and deployment of improved CO2 capture systems, government actions that significantly limit CO2 emissions to the atmosphere ultimately are needed to realize substantial and sustained reductions in the future cost of CO2 capture.  相似文献   

5.
Abstract

The reduction of greenhouse gas emissions and replacement of fossil fuels by renewable energy sources are important national and international targets. Oxyfuel (oxygen combustion technology) is one of the most promising technologies enabling carbon capture and storage from flue gases. The aim of oxyfuel concept development is to study different oxygen production technologies, combustion processes, CO2 capture methods and integrate those to optimised concept. The goal is to create technical readiness for demonstration of oxygen combustion by using state of the art knowledge, experiments, modelling and simulation. Demonstration plan for oxygen combustion for an existing power plant(s) in Finland will be prepared. Main results will be an evaluation of oxygen combustion business potential for implementation in existing and new power plants, and improvement of competitiveness of Finnish companies in energy sector by developing CO2 free power production technologies.

Before oxygen combustion can be demonstrated in full scale, small scale testing and model development must be done. Material exposure conditions in oxygen combustion will differ from any present day environment. Current high temperature steel grades have not been developed or tested for such aggressive conditions. VTT (Technical Research Centre of Finland) has in Jyväskylä unique small scale combustors applicable for oxygen combustion research.  相似文献   

6.
In this study, we estimate and analyze the CO2 mitigation costs of large-scale biomass-fired cogeneration technologies with CO2 capture and storage. The CO2 mitigation cost indicates the minimum economic incentive required (e.g. in the form of a carbon tax) to make the cost of a less carbon intensive system equal to the cost of a reference system. If carbon (as CO2) is captured from biomass-fired energy systems, the systems could in principle be negative CO2 emitting energy systems. CO2 capture and storage from energy systems however, leads to reduced energy efficiency, higher investment costs, and increased costs of end products compared with energy systems in which CO2 is vented. Here, we have analyzed biomass-fired cogeneration plants based on steam turbine technology (CHP-BST) and integrated gasification combined cycle technology (CHP-BIGCC). Three different scales were considered to analyze the scale effects. Logging residues was assumed as biomass feedstock. Two methods were used to estimate and compare the CO2 mitigation cost. In the first method, the cogenerated power was credited based on avoided power production in stand-alone plants and in the second method the same reference output was produced from all systems. Biomass-fired CHP-BIGCC with CO2 capture and storage was found very energy and emission efficient and cost competitive compared with other conversion systems.  相似文献   

7.
This study models the costs of electricity generation with carbon capture and sequestration (CCS), from generation at the power plant to carbon injection at the reservoir, examining the economic factors that affect technology choice and CCS costs at the individual plant level. The results suggest that natural gas and coal prices have profound impacts on the carbon price needed to induce CCS. To extend previous analyses we develop a "cost region" graph that models technology choice as a function of carbon and fuel prices. Generally, the least-cost technology at low carbon prices is pulverized coal, while intermediate carbon prices favor natural gas technologies and high carbon prices favor coal gasification with capture. However, the specific carbon prices at which these transitions occur is largely determined by the price of natural gas. For instance, the CCS-justifying carbon price ranges from $27/t CO2 at high natural gas prices to $54/t CO2 at low natural gas prices. This result has important implications for potential climate change legislation. The capital costs of the generation and CO2 capture plant are also highly important, while pipeline distance and criteria pollutant control are less significant.  相似文献   

8.
In the fossil‐fuel‐based economies, current remedies for the CO2 reduction from large‐scale energy consumers (e.g. power stations and cement works) mainly rely on carbon capture and storage, having three proposed generic solutions: post‐combustion capture, pre‐combustion capture, and oxy fuel combustion. All the aforementioned approaches are based on various physical and chemical phenomena including absorption, adsorption, and cryogenic capture of CO2. The purified carbon dioxide is sent for the physical storage options afterwards, using the earth as a gigantic reservoir with unknown long‐term environmental impacts as well as possible hazards associated with that. Consequently, the ultimate solution for the CO2 sequestration is the chemical transformation of this stable molecule to useful products such as fuels (through, for example, Fischer–Tropsch chemistry) or polymers (through successive copolymerization and chain growth). This sustainably reduces carbon emissions, taking full advantage of CO2‐derived chemical commodities, so‐called carbon capture and conversion. Nevertheless, the surface chemistry of CO2 reduction is a challenge due to the presence of large energy barriers, requiring noticeable catalysis. This work aims to review the most recent advances in this concept selectively (CO2 conversion to fuels and CO2 copolymerization) with chemical engineering approach in terms of both materials and process design. Some of the most promising studies are expanded in detail, concluding with the necessity of subsidizing more research on CO2 conversion technologies considering the growing global concerns on carbon management. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This article presents a consistent techno-economic assessment and comparison of CO2 capture technologies for key industrial sectors (iron and steel, cement, petroleum refineries and petrochemicals). The assessment is based on an extensive literature review, covering studies from both industries and academia. Key parameters, e.g., capacity factor (91-97%), energy prices (natural gas: 8 €2007/GJ, coal: 2.5 €2007/GJ, grid electricity: 55 €/MWh), interest rate (10%), economic plant lifetime (20 years), CO2 compression pressure (110 bar), and grid electricity CO2 intensity (400 g/kWh), were standardized to enable a fair comparison of technologies. The analysis focuses on the changes in energy, CO2 emissions and material flows, due to the deployment of CO2 capture technologies. CO2 capture technologies are categorized into short-mid term (ST/MT) and long term (LT) technologies. The findings of this study identified a large number of technologies under development, but it is too soon to identify which technologies would become dominant in the future. Moreover, a good integration of industrial plants and power plants is essential for cost-effective CO2 capture because CO2 capture may increase the industrial onsite electricity production significantly.For the iron and steel sector, 40-65 €/tCO2 avoided may be achieved in the ST/MT, depending on the ironmaking process and the CO2 capture technique. Advanced LT CO2 capture technologies for the blast furnace based process may not offer significant advantages over conventional ones (30-55 €/tCO2 avoided). Rather than the performance of CO2 capture technique itself, low-cost CO2 emissions reduction comes from good integration of CO2 capture to the ironmaking process. Advanced smelting reduction with integrated CO2 capture may enable lower steel production cost and lower CO2 emissions than the blast furnace based process, i.e., negative CO2 mitigation cost. For the cement sector, post-combustion capture appears to be the only commercial technology in the ST/MT and the costs are above 65 €/tCO2 avoided. In the LT, a number of technologies may enable 25-55 €/tCO2 avoided. The findings also indicate that, in some cases, partial CO2 capture may have comparative advantages. For the refining and petrochemical sectors, oxyfuel capture was found to be more economical than others at 50-60 €/tCO2 avoided in ST/MT and about 30 €/tCO2 avoided in the LT. However, oxyfuel retrofit of furnaces and heaters may be more complicated than that of boilers.Crude estimates of technical potentials for global CO2 emissions reduction for 2030 were made for the industrial processes investigated with the ST/MT technologies. They amount up to about 4 Gt/yr: 1 Gt/yr for the iron and steel sector, about 2 Gt/yr for the cement sector, and 1 Gt/yr for petroleum refineries. The actual deployment level would be much lower due to various constraints, about 0.8 Gt/yr, in a stringent emissions reduction scenario.  相似文献   

10.
The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO2 capture efficiency, life cycle GHG emissions are reduced by 75–84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO2 capture is employed, the increase in other air pollutants such as NOx and NH3 leads to higher eutrophication and acidification potentials.  相似文献   

11.
Latest estimates suggest that widespread deployment of carbon capture and storage (CCS) could account for up to one-fifth of the needed global reduction in CO2 emissions by 2050. Governments are attempting to stimulate investments in CCS technology both directly through subsidizing demonstration projects, and indirectly through developing price incentives in carbon markets. Yet, corporate decision-makers are finding CCS investments challenging. Common explanations for delay in corporate CCS investments include operational concerns such as the high cost of capture technologies, technological uncertainties in integrated CCS systems and underdeveloped regulatory and liability regimes. In this paper, we place corporate CCS adoption decisions within a technology strategy perspective. We diagnose four underlying characteristics of the strategic CCS technology adoption decision that present unusual challenges for decision-makers: such investments are precautionary, sustaining, cumulative and situated. Understanding CCS as a corporate technology strategy challenge can help us move beyond the usual list of operational barriers to CCS and make public policy recommendations to help overcome them.  相似文献   

12.
The increasing pressure resulting from the need for CO2 mitigation is in conflict with the predominance of coal in China’s energy structure. A possible solution to this tension between climate change and fossil fuel consumption fact could be the introduction of the carbon capture and storage (CCS) technology. However, high cost and other problems give rise to great uncertainty in R&D and popularization of carbon capture technology. This paper presents a real options model incorporating policy uncertainty described by carbon price scenarios (including stochasticity), allowing for possible technological change. This model is further used to determine the best strategy for investing in CCS technology in an uncertain environment in China and the effect of climate policy on the decision-making process of investment into carbon-saving technologies.  相似文献   

13.
Carbon capture and storage (CCS) covers a broad range of technologies that are being developed to allow carbon dioxide (CO2) emissions from fossil fuel use at large point sources to be transported to safe geological storage, rather than being emitted to the atmosphere. Some key enabling contributions from technology development that could help to facilitate the widespread commercial deployment of CCS are expected to include cost reductions for CO2 capture technology and improved techniques for monitoring stored CO2. It is important, however, to realise that CCS will always require additional energy compared to projects without CCS, so will not be used unless project operators see an appropriate value for reducing CO2 emissions from their operations or legislation is introduced that requires CCS to be used. Possible key advances for CO2 capture technology over the next 50 years, which are expected to arise from an eventual adoption of CCS as standard practice for all large stationary fossil fuel installations, are also identified. These include continued incremental improvements (e.g. many potential solvent developments) as well as possible step-changes, such as ion transfer membranes for oxygen production for integrated gasifier combined cycle and oxyfuel plants.  相似文献   

14.
Post-combustion carbon capture is a valuable technology, capable of being deployed to meet global CO2 emissions targets. The technology is mature and can be retrofitted easily with existing carbon emitting energy generation sources, such as natural gas combined cycles. This study investigates the effect of operating a natural gas combined cycle plant coupled with carbon capture and storage while using varying fuel compositions, with a strong focus on the influence of the CO2 concentration in the fuel. The novelty of this study lies in exploring the technical and economic performance of the integrated system, whilst operating with different fuel compositions. The study reports the design of a natural gas combined cycle gas turbine and CO2 capture plant (with 30 wt% monoethanolamine), which were modelled using the gCCS process modelling application. The fuel compositions analysed were varied, with focus on the CO2 content increasing from 1% to 5%, 7.5% and 10%. The operation of the CO2 capture plant is also investigated with focus on the CO2 capture efficiency, specific reboiler duty and the flooding point. The economic analysis highlights the effect of the varying fuel compositions on the cost of electricity as well as the cost of CO2 avoided. The study revealed that increased CO2 concentrations in the fuel cause a decrease in the efficiency of the natural gas combined cycle gas turbine; however, rising the CO2 concentration and flowrate of the flue gas improves the operation of the capture plant at the risk of an increase in the flooding velocity in the column. The economic analysis shows a slight increase in cost of electricity for fuels with higher CO2 contents; however, the results also show a reduction in the cost of CO2 avoided by larger margins.  相似文献   

15.
Renewable methanol has potential to be a key vector for attaining net zero emissions by providing a pathway to carbon neutrality for the value chains of carbon intensive industries with hard to abate emissions. To deliver an accurate assessment of feasibility, it is critical to understand the integrated operation and economies of the connected generation and conversion technologies that make up Power-to-Methanol (PtM) pathways. Given the highly variable nature of renewable energy (RE) and green hydrogen generation, it is also important to consider the need for feedstock and energy buffers to achieve reliable operation. Herein, we developed a globally applicable open-source cost framework consisting of a farm-to-gate model of Power-to-Methanol (PtM) populated with performance and cost functions from process simulation, recent literature, and industry consultation. This open-source tool was developed to evaluate PtM projects at various scales and locations, utilizing different recycled carbon feedstock sources, with a range of renewable power generation and electrolyser configurations, as well as balancing technologies including intermediate feedstock and power storage options. A key feature of the tool is the ability to analyse and optimize the incorporation of these balancing technologies. By using present cost estimates and defining design constraints to maintain operational viability, we apply this framework to map out the economies of PtM for potentially suitable Australian and international locations as case studies. The study estimates indicative levelized cost of methanol (LCMeOH) of 1360 A$/tMeOH and 1710 A$/tMeOH corresponding to PtM including CO2 sourced from industrial flue gas (IFG) and direct air capture (DAC) respectively. While the case studies analysed in this work consist mainly of Australian locations, the open-source tool is applicable for other global locations as demonstrated by the cases evaluated for PtM in Chile and Germany. The tool presented here aims to serve as a customisable framework to support the assessment, optimization, and deployment of commercial scale e-methanol projects.  相似文献   

16.
CO2是主要的温室气体之一,据统计,1965~2011年全球CO2年排放量从117×108t增长到340×108t,46年间增长了近2倍,年均增长率2.35%,累计排放量达1×1012t以上。预计到2030年,全球CO2年排放量将达到427×108t。化学吸收法是目前工业上捕集CO2的主要手段,主要包括Econamine FGSM工艺、HICAP+TM工艺、DXMTM工艺、KM-CDR工艺、Cansolv CO2捕集工艺、西门子捕集工艺、可再生溶剂吸收工艺、Hitachi技术、Praxair技术、两步闪蒸工艺、CESAR工程工艺和Toshiba工艺等,化学吸收法的溶剂主要是有机胺。虽然有机胺化学吸收法是最有效、最常用且较为经济的CO2捕集方法,但由于有机胺水溶液具有一定的挥发性,也会导致对CO2的吸收能力下降、排放的胺对环境产生一定危害、有机胺腐蚀设备以及由此产生的维护问题等。其他工艺还有膜分离工艺、熔融碳酸盐电化学分离工艺、生成CO2水合物、酶基吸附工艺以及离子液体捕集工艺等,但这些工艺均处于实验室研究阶段。  相似文献   

17.
Oxy-fuel combustion has generated significant interest since it was proposed as a carbon capture technology for newly built and retrofitted coal-fired power plants. Research, development and demonstration of oxy-fuel combustion technologies has been advancing in recent years; however, there are still fundamental issues and technological challenges that must be addressed before this technology can reach its full potential, especially in the areas of combustion in oxygen-carbon dioxide environments and potentially at elevated pressures. This paper presents a technical review of oxy-coal combustion covering the most recent experimental and simulation studies, and numerical models for sub-processes are also used to examine the differences between combustion in an oxidizing stream diluted by nitrogen and carbon dioxide. The evolution of this technology from its original inception for high temperature processes to its current form for carbon capture is introduced, followed by a discussion of various oxy-fuel systems proposed for carbon capture. Of all these oxy-fuel systems, recent research has primarily focused on atmospheric air-like oxy-fuel combustion in a CO2-rich environment. Distinct heat and mass transfer, as well as reaction kinetics, have been reported in this environment because of the difference between the physical and chemical properties of CO2 and N2, which in turn changes the flame characteristics. By tracing the physical and chemical processes that coal particles experience during combustion, the characteristics of oxy-fuel combustion are reviewed in the context of heat and mass transfer, fuel delivery and injection, coal particle heating and moisture evaporation, devolatilization and ignition, char oxidation and gasification, as well as pollutants formation. Operation under elevated pressures has also been proposed for oxy-coal combustion systems in order to improve the overall energy efficiency. The potential impact of elevated pressures on oxy-fuel combustion is discussed when applicable. Narrower flammable regimes and lower laminar burning velocity under oxy-fuel combustion conditions may lead to new stability challenges in operating oxy-coal burners. Recent research on stabilization of oxy-fuel combustion is reviewed, and some guiding principles for retrofit are summarized. Distinct characteristics in oxy-coal combustion necessitate modifications of CFD sub-models because the approximations and assumptions for air-fuel combustion may no longer be valid. Advances in sub-models for turbulent flow, heat transfer and reactions in oxy-coal combustion simulations, and the results obtained using CFD are reviewed. Based on the review, research needs in this combustion technology are suggested.  相似文献   

18.
In this study, a novel wind energy-based carbon dioxide (CO2) capturing system is developed and investigated for practical applications to reduce environmental emissions. The aqueous ammonia-based capturing technology is utilized. Wind turbines are used to operate the onsite ammonia synthesis as well as hydrogen production. The proton exchange membrane electrolysis system is considered for hydrogen production and the Haber-Bosch ammonia synthesis technique is utilized. The developed system is modeled in Aspen Plus software. The system performance for CO2 capture is studied through economic, energy, and exergy perspectives. The CO2 capture cost is evaluated to be between 0.1 and 0.23 $/kg CO2. Furthermore, the system CO2 capture rate is determined to be 3.5 kg/s. Moreover, for a unit mass of CO2 captured, the energy consumption is found to be 640.1 kg CO2/MWh. Several parametric studies are also conducted to analyze the effects of varying operating conditions on the system performance.  相似文献   

19.
Gasification is a promising technology in terms of reducing carbon capture energy and cost penalties as well as for multi-fuel multi-product operation capability. The paper evaluates two carbon capture options in terms of main techno-economic indicators. The first option involves pre-combustion capture, the syngas being catalytically shifted to convert carbon species into CO2 and H2. Gas–liquid absorption is used for separate H2S and CO2 capture, then clean gas is used for power generation. The second capture option is based on post-combustion capture using chemical absorption. The most promising gasifiers were evaluated in a CCS design.  相似文献   

20.
Hydrogen-fueled plants can play an important role in the field of carbon capture and storage, because they facilitate the mitigation of harmful emissions. In this paper, two combined-cycle power plants with pre-combustion CO2 capture are examined, in which natural gas is converted into a hydrogen-rich fuel through reforming. The first plant considered operates with a hydrogen-separating membrane and the second with an autothermal reformer. The two plants are compared to a reference plant without CO2 capture and briefly to alternative oxy-fuel and post-combustion capture technologies. It is found that both plants suffer high penalties caused by the high energy requirements of the reforming components and the CO2 compression units. Additionally, both plants appear inferior to alternative capture technologies. When comparing the two reforming plants, the plant with the hydrogen-separating membrane operates somewhat more efficiently. However, in order to make these technologies more attractive, their thermodynamic efficiency must be enhanced. The potential for improving the efficiencies of these plants is revealed by an exergetic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号