首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以乙醇为液化剂,浓硫酸为催化剂,在体积250 mL的高温高压反应釜中对竹粉进行液化,考察了不同反应条件对竹粉液化的影响,并对液化产物进行中和、逐级分离等处理。液化结果表明:在催化剂浓H_2SO_4用量5%、反应时间30 min、反应温度180℃条件下,竹粉液化率为69.67%,产物中糖苷得率为39.86%,酚类物质得率为20.7%。液化产物逐级分离得到乙基糖苷及3种酚类物质两类平台化合物,其GC-MS分析结果表明:3种酚类物质的主要成分为2,6-二甲氧基苯酚,3,5-二甲氧基-4-邻羟基苯乙酸,4-烯丙基-2,6-二甲氧基苯酚和绵马酚等,约占酚类物质总量的80%;糖苷中主要包含五碳糖苷(呋喃糖苷)和六碳糖苷(吡喃葡萄糖苷和半乳糖苷),占糖苷总量的88.62%。  相似文献   

2.
以竹屑为原料,通过加压液化获得产物甲基糖苷和4种不同相对分子质量的酚类物质,采用多种方法分析了产物组成和结构,考察了不同温度对液化过程的影响,阐明了加压液化过程中木质纤维结构变化规律和产物形成机理。结果表明:绝干竹屑40 g,当m(竹屑)∶m(甲醇)=1∶12,浓硫酸1 g,反应时间10 min,反应温度200℃时,液化产物得率为87.83%,其中甲基糖苷得率48.17%,酚类得率39.66%。通过气相色谱-质谱联用(GC-MS)、高效液相色谱(HPLC)分析产物,结果表明:在液化过程中,纤维素和半纤维素在较低温度下分解,较高液化温度更有利于木质素分解。温度过高时甲基糖苷会进一步分解为酯类和糠醛类化合物。通过对液化残渣的X射线衍射(XRD)、傅里叶红外光谱(FT-IR)分析显示,120~200℃非结晶区的纤维素、木质素和半纤维素部分降解,残渣纤维结晶度相对原料提高6.12%~40.33%,超过200℃,纤维结构完全破坏。  相似文献   

3.
以乙二醇为溶剂,在1-磺酸丁基-3-甲基咪唑硫酸氢盐([C_4H_8SO_3 Hmim]HSO_4)酸性离子液体催化下,进行桉木屑的液化反应。考察了反应温度、反应时间、催化剂用量对液化率以及产物分布的影响,并对液化产物进行了表征。结果表明:在最优液化条件10 g桉木屑,60 g乙二醇,[C_4H_8SO_3 Hmim]HSO_4用量为10 mmol,液化温度为160℃,液化时间150 min下,桉木屑的液化率最高可达96.41%。在离子液体催化下,桉木屑中的半纤维素和木质素快速液化;液化残渣的主要成分为未降解的结晶区纤维素(结晶度75%左右),液化产物水不溶性级分主要为木质素的降解产物,液化产物水溶性级分主要由纤维素的降解产物乙酰丙酸以及乙酰丙酸甲酯组成。  相似文献   

4.
采用甘油-甲醇复合溶剂体系,利用高温高压下甲醇的亚/超临界效应,探索了反应时间、反应温度、催化剂种类及用量等条件对杂木屑液化效果的影响。研究结果表明:甲醇30 g,甘油12 g,草酸0.25 g,粒径在0.28~0.90 mm范围内的混合木屑6 g,在290℃下反应40 min,然后自然冷却至室温,即可获得很好的液化效果,木屑转化率为92.79%。采用GC-MS、FT-IR、GPC等技术手段测定了液化油的物质组成与基团结构,详细研究了水分含量、酸值、黏度等物理学性质。结果表明,液化油的物质构成较复杂,但主要是一些含氧衍生物,包括醇类、醚类、酯类和酚类化合物;液化油主要由小分子物质构成,相对分子质量分布在2 300以下。  相似文献   

5.
超/亚临界水条件下生物质和塑料的共液化   总被引:1,自引:0,他引:1  
采用 500 mL 间歇式高压反应釜,在超临界和亚临界水条件下进行了一系列生物质和塑料单独及共液化实验,考察了反应温度、反应时间、水与木屑-聚乙烯的配比和反应压力对两者共液化的影响.实验结果表明,温度对共液化影响比较大.在 653 K,混合物的组成是对液化物产率影响最大的因素,生物质与塑料质量比为1 ∶ 4时油产率最高,可达到 60 %.生物质能降低塑料的降解温度,塑料为生物质供氢,两者在共液化过程中具有协同作用.生物质和塑料共液化能够提高反应转化率,提高油产率,减缓反应条件的苛刻度.  相似文献   

6.
采用超临界流体技术液化杨木,考察了液固比、温度和时间对液化产物分子量分布的影响,采用响应面法对液化工艺进行了优化。结果表明:液固比的影响最大,温度和时间次之。当液固比为12.2、温度为272℃、时间为72 min时,液化产物中低分子量产物的含量为86.31%,在此条件下杨木的液化率为81.14%,且液化产物的分子量分布主要分布范围在102~1.5×103。FTIR分析显示:液化产物中含有大量的具有反应活性的芳核衍生物。  相似文献   

7.
随着石油资源的不断匮乏,速生杨木这种可再生生物质资源逐渐被人们所重视,为制备可以替代传统树脂的新型树脂材料,解决当今能源危机问题,许多国家都在生物质资源利用方面做了研究。以杨木屑为原料,通过液化试验制备液化产物,再通过液化产物制备树脂,研究催化剂和液化剂用量、反应时间以及反应温度对液化产物所制树脂的影响,寻找较优制备条件。结果表明:液化反应在液固比为1.5的70%苯酚用量、聚乙二醇400的复合液化剂,4%浓硫酸催化剂用量,135℃的液化反应温度,120 min的液化反应时间条件下,可制备出效果较好的液化产物,其残渣率为7%,羟值为370 mg/g。通过液化产物制备树脂的较佳条件是:甲醛与液化产物摩尔比1.2,Na OH与液化产物摩尔比0.5,反应温度85℃反应时间120 min。在此条件下制得优质树脂,黏度为4 500~6 500 m Pa·s,固含量70%~80%。  相似文献   

8.
在Ru/C和甲酸(甲酸盐)的共同作用下,275~350℃的亚临界水中,进行碱木质素的水热解聚反应。通过GC-MS定性分析和GC-FID定量分析,探究了供氢试剂及用量、反应温度、木质素分子级分对木质素水热解聚的影响。结果表明:在甲酸和Ru/C条件下,木质素解聚液相产物得率最高,组成较简单,具有较好催化降解效果;在甲酸添加量为0.8 mol/L,反应30 min时,木质素解聚液相产物最多,其中含量最高的单酚类物质为4-甲基愈创木酚,在主要单酚类物质中占32.77%,木质素水热解聚液相产物得率随温度升高而先增后减,并在325℃时取得峰值;L1、L2和L3是碱木质素的3个不同的分子级分,L1级分对木质素解聚液相产物得率贡献最大,达61.80%,且产物中单酚类物质总得率最高,为112.71 mg/g。其中,愈创木酚与4-甲基愈创木酚所占比例最高,可分别为35.38和35.52 mg/g;对木质素进行分级分离处理后再进行水热转化反应,有利于液相产物和单酚类物质得率的进一步提高。  相似文献   

9.
通过共沉淀法和浸渍法制备了SO_4~(2-)/TiO_2-ZrO_2固体酸催化剂,并采用傅里叶红外光谱(FT-IR)、X射线能谱(EDX)和氮气吸附-脱附分析等手段对催化剂进行表征,考察了溶剂配比、反应温度、反应停留时间和催化剂用量对玉米芯在近临界甲醇-环己烷中液化转化率的影响,并利用FT-IR和气相色谱-质谱联用仪(GC-MS)对玉米芯液化产物进行了分析。结果表明:SO_4~(2-)成功地负载到TiO_2-ZrO_2上,且SO_4~(2-)/TiO_2-ZrO_2属于介孔材料;玉米芯的最佳催化液化条件为V(甲醇)∶V(环己烷)=2∶1,反应温度250℃,反应停留时间1.5 h,催化剂用量(以玉米芯质量计)4%,玉米芯与溶剂的固液比为1∶15(g∶m L),此条件下液化转化率为76.67%。FT-IR和GC-MS分析表明玉米芯液化产物主要成分为酚类和酯类化合物。  相似文献   

10.
以乙二醇为液化剂对稻草进行液化和酶解预处理,经肺炎克雷伯氏菌(Klebsiella pneu-moniae CICC 10011)发酵制备2,3-丁二醇。考察了温度、pH值、接种量、摇床转速、时间和底物浓度对发酵产2,3-丁二醇的影响。结果表明:稻草液化产物酶解后,经双膜浓缩总糖质量浓度可控制在85~95 g/L,不但为后续发酵提供充足的碳源,而且实现了工艺控制的自动化,易于提高产物浓度,降低分离成本。对其脱色发酵生产2,3-丁二醇,最佳发酵条件为:初始总糖质量浓度94.3 g/L、37℃、pH值5.5、接种量10%、转速170 r/min、反应72 h,制得2,3-丁二醇质量浓度为36.47 g/L,2,3-丁二醇对总糖的转化率可达42.5%,生产效率为0.51 g/(L.h),对其液化产物的转化率最高为33.4%。  相似文献   

11.
杉木粉液化与液化产物树脂化的研究   总被引:2,自引:0,他引:2  
以硫酸为催化剂、苯酚为液化剂采用溶剂热法对杉木粉进行液化,用杉木粉液化产物制备出酚醛树脂;考察了反应温度、反应时间、液比(苯酚-木粉的质量比)和催化剂用量对杉木粉液化效率的影响,并初步探讨了液化产物残渣率对所制酚醛树脂性能的影响。实验结果表明,杉木粉液化的最佳工艺条件是:反应温度160℃,液化时间12 h,液比值3,催化剂用量3%,在此条件下残渣率约为10%。液化产物残渣率的测定表明,升高反应温度、延长反应时间、增加液比和催化剂用量可以降低残渣率,提高液化效率;液比值为0.5~1.5时残渣率随液比增加而显著降低,催化剂用量为0.5%~2%时液化效率的变化明显。红外光谱结果表明,由液化产物所合成的酚醛树脂中羟甲基含量较高。液化产物残渣率低时制备的酚醛树脂残碳率较高。  相似文献   

12.
利用固定床反应器研究了木屑与低密度聚乙烯(LDPE)共热解时的热解行为,并以木屑、LDPE单独热解为对照,考察了热解温度对共热解行为的影响,结果表明:木屑与LDPE共热解可以提高液体产率,当热解温度为600℃时液体产率达到最大值56.84%,比理论值高6.44个百分点。通过GC-MS对生物质与LDPE共热解液体产物组成进行了分析,发现共热解产生的生物油组分主要为脂肪烃、醇类及酚类,共热解过程中还生成了某些特定组分,如十一醇、庚烯醛等含氧长链化合物,这是生物质与LDPE共热解时自由基相互作用的产物。通过热重-红外联用实验研究了木屑与LDPE共热解的协同作用,结果发现:共热解时最大反应速率温度为490℃,相比LDPE单独热解时的512℃降低22℃;木质素裂解过程中产生的羟基自由基会与LDPE裂解产生的小分子产物结合形成十一醇、辛基苯酚等物质,而纤维素热解过程中生成的呋喃类、醛类会与LDPE裂解产生的CnHm分子结合形成2-丁基四氢呋喃、庚烯醛、十二醛等物质。  相似文献   

13.
生物质是唯一可转化为液体燃料的可再生资源,利用可再生生物质资源替代传统化石资源制备液体燃料及化学品受到越来越多的关注。笔者采用水-正丁醇双溶剂体系构建竹粉水油相液化溶剂体系,在酸催化条件下实现竹粉液化转化及其产物反应分离,研究了油水体系对竹粉液化及油水溶性组分分离的影响。结果表明:液化最佳反应条件为水-正丁醇比例20∶60、反应温度240℃、反应时间60 min、固液比1∶10;最佳反应条件下竹粉转化率为92.5%,水相产率6.6%,油相产率70.5%。正丁醇含量、反应温度及反应时间的提高可以实现水相组分向油相组分转化,从而提高油相组分含量。液化产物分析结果表明,油相组分C元素含量及热值相对于竹粉明显提高,分别提高约1.3及1.9倍;水-正丁醇溶剂体系已基本实现液化产物高热值油相及低热值水相组分的分离。  相似文献   

14.
超临界甲醇液化杉木工艺的探讨   总被引:1,自引:0,他引:1  
采用超临界流体技术液化杉木,考察了溶木比、温度、压力及时间对液化率及分子特征的影响,并使用FTIR和XRD对液化产物及其残渣进行了分析。结果表明,当溶木比为12:1,温度为270℃,压力为12MPa,时间为60min时,有较高的液化率,且液化产物的分子量分布均匀。FTIR和XRD的分析结果显示,杉木超临界液化产物中含有大量的具有反应活性的芳核衍生物,同时也仍然有一些微晶结构存在。  相似文献   

15.
以速生杨木为原料,采用液化技术进行预处理后发酵制备燃料乙醇。探讨了预处理温度、时间、催化剂用量及液比对乙醇得率的影响。采用响应面法建立二次回归模型,并对预处理工艺进行了优化。研究结果表明液化技术预处理能有效的促进杨木降解,提高乙醇的得率。当预处理温度为107.78℃、预处理时间为83.70 min、催化剂用量为3.01%时,燃料乙醇的得率比相同条件下未进行液化预处理的试样提高了24.21%。  相似文献   

16.
针对传统木材苯酚液化技术中存在的反应时间长、产物黏度高和反应活性降低等问题,采用微波加热方式,将杨木木粉在酸化苯酚溶剂中进行快速解聚反应。结果表明,微波加热条件下杨木苯酚液化的适宜条件为:木粉含水率30%~40%,液化时间15 min,苯酚与木粉的比例(P/W)2.5,木粉粒径0.18~0.25 mm,在此条件下木材液化率达到87%。微波加热的木材苯酚液化速率比传统油浴加热提高至少6倍。木材被降解为醇类、酸类、醚类、醛类和酚类等低分子质量物质,液化产物黏度显著降低,仅为3015 mPa·s,且与甲醛的反应活性较高,100 g液化产物反应消耗的甲醛达2.1 mol。微波加热与传统加热下的木材苯酚液化反应历程不尽相同,主要表现在纤维素和半纤维素降解为单糖后,单糖可进一步断裂为2,3-丁二醇、1,2-丙二醇、乙二醇和乙二醛等物质,这些物质相互之间可以发生脱水、羟醛缩合等反应进一步生成 2-乙氧基-丙烷,1,1-二乙氧基-乙烷、二异丙基缩甲醛和12-冠醚-4。  相似文献   

17.
以聚乙二醇400和丙三醇为液化剂,浓硫酸为催化剂,对沙柳木粉进行液化试验,通过单因素分析和正交试验,探索了不同条件对液化反应的影响,试验结果表明:当液固比为5:1,聚乙二醇400用量为液化剂用量的75%,催化剂用量为液化剂用量的4%,液化时间为110min,液化温度为170℃时,液化残渣率可低至1.32%。沙柳木粉液化产物的羟值随时间的增加从389mg/g降到334mg/g,能满足制备聚氨酯纤维对原料的要求。  相似文献   

18.
采用喷动循环流化床快速热解系统对落叶松树皮进行快速热解制备高酚类物质含量生物油,考察反应温度、粒径、进料速率和气体流量对生物油中酚类物质含量的影响,以生物油中酚类物质含量为目标,优化快速热解工艺.结果表明:反应温度、粒径是影响生物油中酚类物质含量的关键因素;制备高酚类物质含量生物油的喷动循环流化床快速热解最佳工艺为:反应温度823K,粒径0.3~ 0.45mm,进料速率50 r/min,气流量15 m3/h.  相似文献   

19.
为了综合利用油茶饼粕,分析了油茶饼粕的基本组成,采用苯酚为液化剂,硫酸为催化剂,对油茶饼粕进行了液化实验。结果显示油茶饼粕中糖类、粗纤维和粗蛋白质的总质量分数约为75%,能够有效进行液化。研究了反应温度、苯酚与油茶饼粕的质量比(液比)、催化剂的用量及液化时间对液化反应的影响,实验得出较佳的液化工艺条件为:硫酸用量4%,液化时间1.5 h,液化温度140℃,液比值4,此时液化残渣率16.25%。利用傅里叶红外光谱(FT-IR)分析了油茶饼粕及其液化残渣和产物的结构特征,结果显示苯酚与油茶饼粕组分发生了明显酚化反应和醚化反应,形成了更多的活性官能团。油茶饼粕中蛋白质结构遭到破坏,蛋白质也发生了液化反应。  相似文献   

20.
桉树木粉的有机磺酸催化热化学液化研究   总被引:3,自引:2,他引:1  
研究了对甲苯磺酸催化桉树木粉在多元醇体系的液化反应,利用在线红外光谱技术,研究了桉树木粉的醇解液化反应过程,探索了不同反应条件对液化反应的影响。通过对液化产物的分析,揭示了液化产物的性质随反应时间变化的规律。实验结果表明:桉树木粉在聚乙二醇-丙三醇(质量比4∶1)的液化溶剂中,当对甲苯磺酸用量为3%、反应温度160℃、液固质量比4∶1、液化反应时间180 min时,其液化产率高达89.97%。液化产物的羟值随反应时间的增加在460~340 mg/g区间逐渐降低、酸值在13~20 mg/g区间逐渐增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号