首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 791 毫秒
1.
Traditional design methods to achieve improvement in heat sink performance are not suitable for meeting new thermal challenges. Revolutionary rather than evolutionary concepts are required for removing heat from the electronic components. We have recently developed an emerging novel approach, the integration design of the forced convection air cooling system. The aerodynamic design for the miniature axial-flow fan is conducted and a CPU fan is designed to be integrated with the radial fins in order to form a complete fan-heat sink assembly. The 3-D data of the fan generated by FORTRAN program are imported into Pro/E to create its 3-D model. The performance curve of the fan prototype fabricated by the computer numerically controlled machine is tested in a standard wind tunnel. To reduce the economic cost and prompt the design efficiency, the computational fluid dynamics is adopted to estimate the initial fan's performance. A series of radial heat sinks is designed in accordance with the outflow angle of airflow discharged from the fan. The inlet angle of the fin is arranged so that the incoming flow from the upstream impeller matches the fin's angle of heat sinks. Using the multi-block hexahedral grid technique, the numerical simulation of the system, including the fan and heat sinks, is performed by means of Multiple Reference Frame (MRF) and RNG k-$varepsilon$ Model. Our results indicate that the thermal resistance of the streamlined heat sink is decreased by 15.9% compared to the traditional heat sink and the entropy generation rate of the streamlined heat sink is lower. The experiments support our simulation results. The series of heat sinks is able to achieve the productive thermal performance when the integration design concept is utilized.   相似文献   

2.
A hybrid heat sink concept which combines passive and active cooling approaches is proposed. The hybrid heat sink is essentially a plate fin heat sink with the tip immersed in a phase change material (PCM). The exposed area of the fins dissipates heat during periods when high convective cooling is available. When the air cooling is reduced, the heat is absorbed by the PCM. The governing conservation equations are solved using a finite-volume method on orthogonal, rectangular grids. An enthalpy method is used for modeling the melting/re-solidification phenomena. Results from the analysis elucidate the thermal performance of these hybrid heat sinks. The improved performance of the hybrid heat sink compared to a finned heat sink (without a PCM) under identical conditions, is quantified. In order to reduce the computational time and aid in preliminary design, a one-dimensional fin equation is formulated which accounts for the simultaneous convective heat transfer from the finned surface and melting of the PCM at the tip. The influence of the location, amount, and type of PCM, as well as the fin thickness on the thermal performance of the hybrid heat sink is investigated. Simple guidelines are developed for preliminary design of these heat sinks.  相似文献   

3.
在板式翅片散热器的基础上,通过增加不同数量和半径的半圆柱肋片,构造了6种不同结构的半圆柱板翅片散热器(HPPFHS),并通过数值模拟的方法对这两种散热器的流动和传热特性进行了研究。结果表明,随着入口风速的增加,两种散热器的热阻减小的同时压降随之增大,但其热阻减小的趋势变小。入口风速相同时,相比板式翅片散热器,流经半圆柱板翅片散热器的空气受到半圆柱肋片的影响产生涡流,因而减少了热阻,同时增加了压降,但其综合性能远好于板式翅片散热器。  相似文献   

4.
由于水冷散热器体积小,流体在散热器内流动形式复杂,使散热器设计加工和性能测试在常规条件下有一定局限性。通过建立微通道水冷散热器三维模型,运用ANSYS软件对影响散热器性能的因素(进口水温、环境温度、进口流速)进行了模拟分析,得出了不同条件下芯片工作时的温度场分布,为后续微通道水冷散热器的优化设计提供了理论依据。  相似文献   

5.
Experiments have been performed to investigate the cooling performance of triangular folded fin heat sinks made of 6000 series aluminum in a duct flow. The dimension of the triangular folded fin heat sink is 70mm in width and 92 mm in length with an 8-mm-thick base plate. The fin height is varied from 19 to 36 mm and the fin pitch from 5.0 to 9.0 mm. The duct air velocity is in the range of 1.0 to 5.0 m/s and the corresponding Reynolds number based on the hydraulic diameter is varied from 212 to 1974. The experimental results show that the cooling performance of triangular folded fin heat sink is influenced by the fin pitch, the Reynolds number, and the fin height. It increases substantially as the fin pitch decreases and the Reynolds number and the fin height increase. By compiling the experimental data, the heat transfer and the friction factor correlations with plusmn6.5% and plusmn20% accuracy, respectively, are provided for effective design of triangular folded fin heat sinks  相似文献   

6.
The design and optimization methodology of a thermally conductive polyphenylene sulphide (PPS) polymer staggered pin fin heat sink, for an advanced natural convection cooled microprocessor application, are described using existing analytical equations. The geometric dependence of heat dissipation and the relationships between the pin fin height, pin diameter, horizontal spacing, and pin fin density for a fixed base area and excess temperature are discussed. Experimental results of a pin finned thermally conductive PPS heat sink in natural convection indicate substantially high thermal performance. Numerical results substantiate analytical modeling results for heat sinks within the Aihara et al. fin density range. The cooling rates and coefficient of thermal performance, COP/sub T/, that relates cooling capability to the energy invested in the formation of the heat sink, has been determined for such heat sinks and compared with conventional aluminum heat sinks.  相似文献   

7.
The thermal performance of plate fin, round pin-fin, and offset strip-fin heat sinks with a duct-flow type fan arrangement was analytically evaluated. Heat sinks of 65mm$times hbox60, hboxmm hboxplan hboxareatimes hbox50 hboxmm hboxheight$with a 4300-RPM dc fan (60mm$times$15mm) were chosen for the performance comparison. A constant temperature, 6-mm thick heat sink base plate is assumed so that thermal spreading resistance is not involved. The operating point on the fan curve is based on the flow pressure drop impedance curve through a heat sink using the friction factor correlation for the chosen heat sink. The loss coefficients at both the entrance and the exit of the heat sink are included in the flow impedance curve. The operating point is defined by the balance point of the flow impedance curve and the fan performance curve. After determining the operating air velocity, the convective thermal resistance of heat sinks is evaluated from the Nusselt number correlation for the chosen heat sink. Results obtained show that optimized round pin-fin heat sinks provide 32.8%–46.4% higher convective thermal resistance compared to an optimized plate-fin heat sink. The optimized offset strip-fin heat sink shows a slightly lower convective thermal resistance than the plate-fin heat sink. As the offset strip length decreases, however, thermal performance seriously deteriorates.  相似文献   

8.
CPU散热器热分析与优化设计   总被引:4,自引:0,他引:4  
利用CFD方法分析了平板直肋片散热器特性,通过多元线性回归建立了散热器换热和流动准则关系式,提供了散热器热阻和熵产率具体表达式;结合熵特性以本文提出的准则关系式采用约束条件的遗传优化算法对散热器结构进行多参数优化,优化结果与特性分析结论和相关文献吻合。  相似文献   

9.
A coefficient of performance (COP/sub T/) analysis for plate fin heat sinks in forced convection is presented and shown to provide a viable technique for combining least-material optimization with the entropy minimization methodology. The COP/sub T/ metric relates the heat sink cooling capability to the invested fan pumping work and the thermodynamic work required to manufacture and assemble the heat sink. The proposed optimization methodology maximizes the forced convection cooling that can be achieved by a heat sink occupying a specified volume, with a fixed energy investment and entropy generation rate. In addition, the study identifies the presence of an optimal resource allocation ratio, providing the most favorable distribution of existing energy resources, between heat sink manufacturing and operation, over a fixed product life cycle.  相似文献   

10.
The specification and design of heat sinks for electronic applications is not easily accomplished through the use of conventional thermal analysis tools because “optimized” geometric and boundary conditions are not known a priori. A procedure is presented that allows the simultaneous optimization of heat sink design parameters based on a minimization of the entropy generation associated with heat transfer and fluid friction. All relevant design parameters for plate fin heat sinks, including geometric parameters, heat dissipation, material properties and flow conditions can be simultaneously optimized to characterize a heat sink that minimizes entropy generation and in turn results in a minimum operating temperature. In addition, a novel approach for incorporating forced convection through the specification of a fan curve is integrated into the optimization procedure, providing a link between optimized design parameters and the system operating point. Examples are presented that demonstrate the robust nature of the model for conditions typically found in electronic applications. The model is shown to converge to a unique solution that gives the optimized design conditions for the imposed problem constraints  相似文献   

11.
尧舜  丁鹏  张亮  张辉  曹银花  王智勇 《中国激光》2008,35(s1):61-64
针对普通大功率半导体激光抽运源用大通道水冷热沉热阻高、工作时热沉表面在大通道水流方向存在明显温升进而导致加载其上的激光bar寿命不一致以及抽运源整体光谱宽度难以控制的问题,利用商用有限元软件ANSYS仿真获得抽运源工作时不同冷却水流量条件下热沉内部温度场分布,分析该结构热沉热阻系统的构成及整体热阻瓶颈所在。实际中通过改变冷却水接口结构,获得“入口效应”,提高了大通道热沉整体换热性能,进一步减小热沉表面温度梯度。利用所设计的新接口大通道水冷热沉获得3 bar线阵120 W连续(CW)输出半导体激光器抽运源,输出中心波长为807.7 nm,光谱宽度(FWHM)为2.8 nm。  相似文献   

12.
影响功率器件散热器散热性能的几何因素分析   总被引:9,自引:1,他引:8  
付桂翠  高泽溪 《电子器件》2003,26(4):354-356,460
型材散热器的几何结构由肋片和基座构成,主要几何参数包括肋片长、肋片厚,肋片数、基座厚、基座宽等,研究了型材散热器几何因素对其热性能的影响,通过改变散热器的几何参数,可以有效的降低散热器的热阻,获得好的散热效果。本文的研究为型材散热器的的选择及优化设计提供了依据。  相似文献   

13.
高温环境下封装有相变材料的热沉结构优化   总被引:3,自引:3,他引:0       下载免费PDF全文
卢涛  姜培学  邓建强   《电子器件》2005,28(3):466-469
高温环境下工作的封装有相变材料的热沉,一方面利用固液相变潜热存储系统吸收电子器件散发的热量,另一方面还要吸收从高温环境传递过来的热量。热沉结构的几何外形是影响上述两个热量传递的关键因素。以热沉总体尺寸、边界条件、热沉和相变材料为约束条件,热沉基部最高温度到达临界温度的最大时间为优化目标,通过数值模拟,获得了热沉翅片高度和宽度、热沉基部宽度和厚度的优化值,优化值兼顾了热沉传热效率和蓄热能力两个方面,并对优化过程中的热沉进行了传热分析。  相似文献   

14.
This paper presents a formal systematic optimization process to plate-fins heat sink design for dissipating the maximum heat generation from electronic component by applying the entropy generation rate to obtain the highest heat transfer efficiency. The design investigations demonstrate the thermal performance with horizontal inlet cooling stream is slightly superior to that with vertical inlet cooling stream. However, the design of vertical inlet stream model can yield to a less structural mass (volume) required than that of horizontal inlet stream model under the same amount of heat dissipation. In this paper, the constrained optimization of plate-fins heat sink design with vertical inlet stream model is developed to achieve enhanced thermal performance. The number of fins and the aspect ratio are the most responsive factors for influencing thermal performances. The heat sink used on AMD Thunderbird 1-GHz processor has been examined and redesigned by presenting optimization methodology. The optimal thermal analysis has a very good agreement to the both of vendors' announced information and using simulation of parabolic hyperbolic or elliptic numerical integration code series (PHOENICS). The optimum design that minimizes entropy generation rate in this paper primarily applied three criteria for plate-fins heat sink optimal design: formal constrained nonlinear programming to obtain the maximum heat dissipation; prescribed heat dissipation; prescribed surface temperature. As a result, the thermal performance can be notably improved; both the sink size and structural mass can apparently be reduced through the presented design method and process. This analysis and design methodology can be further applied to other finned type heat sink designs.  相似文献   

15.
Optimization of pin-fin heat sinks using entropy generation minimization   总被引:1,自引:0,他引:1  
In this study, an entropy generation minimization, EGM, technique is applied as a unique measure to study the thermodynamic losses caused by heat transfer and pressure drop in cylindrical pin-fin heat sinks. The use of EGM allows the combined effect of thermal resistance and pressure drop to be assessed through the simultaneous interaction with the heat sink. A general expression for the entropy generation rate is obtained by considering the whole heat sink as a control volume and applying the conservation equations for mass and energy with the entropy balance. Analytical/empirical correlations for heat transfer coefficients and friction factors are used in the optimization model, where the characteristic length is used as the diameter of the pin and reference velocity used in Reynolds number and pressure drop is based on the minimum free area available for the fluid flow. Both in-line and staggered arrangements are studied and their relative performance is compared on the basis of equal overall volume of heat sinks. It is shown that all relevant design parameters for pin-fin heat sinks, including geometric parameters, material properties and flow conditions can be simultaneously optimized.  相似文献   

16.
This work introduces a multiobjective evolutionary algorithm capable of handling noisy problems with a particular emphasis on robustness against unexpected measurements (outliers). The algorithm is based on the Strength Pareto evolutionary algorithm of Zitzler and Thiele and includes the new concepts of domination dependent lifetime, re-evaluation of solutions and modifications in the update of the archive population. Several tests on prototypical functions underline the improvements in convergence speed and robustness of the extended algorithm. The proposed algorithm is implemented to the Pareto optimization of the combustion process of a stationary gas turbine in an industrial setup. The Pareto front is constructed for the objectives of minimization of NO/sub x/ emissions and reduction of the pressure fluctuations (pulsation) of the flame. Both objectives are conflicting affecting the environment and the lifetime of the turbine, respectively. The optimization leads a Pareto front corresponding to reduced emissions and pulsation of the burner. The physical implications of the solutions are discussed and the algorithm is evaluated.  相似文献   

17.
论述了发射组件强迫风冷系统的热设计方法,介绍了强迫风冷体积流量的理论估算。用ICEPAK CFD热分析软件进行热仿真,包括建模、加载边界条件、检查结果等。在仿真时根据最高温度、风扇的工作点、出风口和入风口的温度差,对翅片的厚度、齿间距进行优化,模块产生的热量通过流过散热器翅片间的强迫流动的空气散发出去,最终满足发射组件热设计的要求。元器件工作在允许的温度范围内,确保发射模块正常工作。测试数据与仿真数据基本符合表明热仿真的正确性。  相似文献   

18.
Tests have been conducted in a wind tunnel with seven types of heat sinks including plate fin, strip fin, and pin fin heat sinks. In the case of strip fin, and pin fin heat sinks, both in-line and staggered arrays have been studied. The pin fin heat sinks had circular and square cross-sections. For each type, tests were run with fin heights (H) of 10, 15, and 20 mm while the heat sink width (B) was kept constant and equal to 52.8 mm. In total, 42 different heat sinks were tested. The width of the wind tunnel duct (CB) was varied in such a way that results were obtained for B/CB=0.84, 0.53, and 0.33. The wind tunnel height (CH) was varied similarly, and data were recorded for H/CH=1, 0.67, and 0.33 while the duct Reynolds number was varied between 2000 through 16500. An empirical bypass correlation has been developed for the different fin designs. The correlation predicts the Nusselt number and the dimensionless pressure drop and takes into account the influence of duct height, duct width, fin height, fin thickness, and fin-to-fin distance. The correlation parameters are individual for each fin design. Further, a physical bypass model for plate fin heat sinks has been developed to describe the bypass effect  相似文献   

19.
With smaller inlet flow velocity, a micro-channel stack requires less pumping power to remove a certain rate of heat than a single-layered micro-channel, because it provides a larger heat transfer area. A simple thermal resistance network model was developed to evaluate the overall thermal performance of a stacked micro-channel heat sink. Based on this simple model, in this study, a single objective minimization of overall thermal resistance is carried out using genetic algorithms. The aspect ratio, fin thickness and the ratio of channel width to fin thickness are the variables to be optimized, subject to constraints of maximum pressure drop (4 bar) and maximum volumetric flow rate (1000 ml/min). During the optimization, the overall dimensions, number of layers and pumping power (product of pressure drop and flow rate) are fixed. The study indicates that reduction in thermal resistance can be achieved by optimizing the channel configuration. The effects of number of layers in the stack, pumping power per unit area, and the channel length are also investigated.  相似文献   

20.
提出一种压电风扇嵌入式冷却系统,并对其进行了数值模拟和试验研究,分析了压电风扇诱导非定常流场流动特性及强化换热性能,研究了外部供风风速、翅间距对流场和换热性能的影响。研究表明,由于压电风扇的挤压、扰动及涡旋的作用,翅片壁面原本稳定的热边界层被破坏,流体的混合和热交换作用增强,温度梯度减小,因而翅片与空气间的热阻降低。结果表明,翅间距为18mm时,该文中压电风扇散热效果最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号