首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
埋地热油管道停输轴向温降规律研究   总被引:6,自引:0,他引:6  
热油管道的计划检修和事故抢修都在管线停输情况下进行,停输后,管内存油油温不断下降,存油粘度随油温下降而增大,当粘度增大到一定值后,会给管道输送再启动带来极大的困难,甚至会造成凝管事故.为了确保安全经济地输油,必须研究管路停输后的温降情况,以便确定允许停输时间.根据热油管道停输后油品和管道周围土壤的热力变化工况,提出了传热定解问题并对其进行数学求解,得出了管道中油品轴向温度随时间和距离变化的解析解,并编制了相应的软件,从而为更合理地确定在不同季节安全停输时间提供了科学计算依据.  相似文献   

2.
热油管道停输温降规律的研究是确保管线安全启动的首要条件。埋地长输管道沿线地质条件复杂, 常穿越河流、湖泊,导致部分管线水下敷设,由于没有周围土壤的蓄热作用,在停输过程中水下管段的温降往往决定 了整条管线的停输时间。随着海上油气的开采,水下管道安全停输规律的研究显的更为重要。利用FLUENT 软 件,采用“焓-多孔度”技术模拟水下管道停输过程管内原油温降规律并考虑了原油凝固潜热对温降的影响,得出了 不同时刻管内原油凝固区、混合区、液油区的位置。结果表明,管道停输初期管内原油温度整体下降较快,中后期由 于原油凝固释放潜热且凝油层厚度不断增加,热阻增大,大大降低了原油温降速率,模拟结果与实际吻合较好。  相似文献   

3.
为了降低热油管道输送中的运行能耗,在考虑大气温度和管道埋深处土壤自然温度场的准周期变化规律、总传热系数、油品流速对沿程温降影响的条件下,建立油流温降模型,并给出解析解,详细分析了长输热油管道加热站出站油温、油流沿线温降变化规律.这对热油管道生产运行工作制度的制定具有重要的理论价值,为埋地热油管道的平稳低耗运行提供可靠的理论依据.  相似文献   

4.
对热油管道停输温降规律进行研究,是确保管线安全启动的首要条件。针对海底热油管道运行环境特点,基于多孔介质传热理论,建立了海底土壤水热耦合控制方程,用软件模拟了海底管道停输过程中温度随时间的变化规律,分析了保温层、渗流温度、渗流速度等因素对管道停输温降的影响,确定了合理的停输时间。研究结果可为海底管道安全启动提供理论指导。  相似文献   

5.
管内含蜡原油在停输后的温降过程是一个伴随相变、自然对流及移动边界的不稳定传热的过程,目前停输降温过程的研究主要采用数值计算的方法。从管内原油传热和管道与外部环境传热等角度,对热油管道温降过程的研究现状进行综述,指出在计算时需要处理好管内原油的自然对流、具有移动边界的析蜡相变传热以及埋地热油管道外土壤求解区域的简化问题。只有充分考虑上述问题,对热油管道的停输降温过程进行研究,才能得出对实践更具有指导意义的结果。  相似文献   

6.
利用Fluent流体分析软件模拟海底管道停输温降过程,分析不同初始油温、不同环境温度下的温降过程,得出了与实际吻合较好的温降曲线。计算结果表明,管道停输0~20h温降速度很快,主要是因为该阶段管内原油的自然对流较强烈。停输20h后的一段时间内温降缓慢,降温在5℃以内,这是因为管内原油接近临界温度,原油黏度增大及蜡晶析出,使得自然对流强度减弱。初始油温和海水温度对停输温降影响非常明显。  相似文献   

7.
加热原油管道停输热力计算   总被引:16,自引:0,他引:16  
在加热原油管道停输过程中 ,油品温度下降 ,粘度上升 ,有时甚至出现冻管事故 ,常常给再启动带来困难。合理地进行热油管道停输后的温度计算 ,模拟原油的凝固过程 ,有利于确定安全停输时间 ,制订再启动方案。针对加热原油管道停输后油品、管道及周围介质的相互关系和它们的不稳定传热 ,提出了热力计算的数学模型。该模型综合考虑了有关物性参数随温度的变化以及在冷却过程中油品的凝固问题。采用保角变换和盒式积分法对数学模型进行了处理 ,并构造出问题的差分方程。通过数值计算分析管道停输后油品冷却和冷凝规律 ,运用文中所提出的方法 ,对加热原油管道停输温度变化和冷凝过程进行了计算 ,与实测数据和文献中计算方法相比 ,该计算结果更符合实际情况  相似文献   

8.
冷热原油顺序输送对土壤温度场的要求及其严格,这也是确保冷油过后,热油能否安全进站的关键。基于传热学和流体动力学,建立了埋地管道流动与传热控制方程,数值模拟了冷热原油顺序输送过程中管道沿线不同位置轴向油温及土壤温度场的动态变化过程。研究表明,随着出站油温的冷热交替周期运行,管道沿线不同位置 的管内油温及周围一定范围内的土壤温度场呈现周期性变化,并存在一定的时间或空间滞后性,且对于低输量运行的管道来说,超过一定输送距离后,输送温度趋于一致;在热油-冷油交替输送过程中,热油受前端冷油的影响,热油头进站温度最低,这是管道安全运行方案应考虑的主要因素。  相似文献   

9.
埋地管道在运行过程中有时会因意外情况而需要停输。在停输过程中,管内油品的温度和土壤温度场的变化很大,会影响管道的安全输送,因此研究停输过程中管内油品的温度和土壤温度场对埋地管道的安全运行有重要的意义。模拟了埋地管道停输时土壤开挖过程中的土壤区、管内油温以及开挖区等三个区域的温度场变化情况,并模拟了开挖区域温度的变化对土壤温度场、管内油温的影响,得出了管内油温和土壤温度场的变化规律,研究结果可为管道的安全生产提供一定的科学依据。  相似文献   

10.
通过建立管道正常运行、停输温降过程和再启动过程的数值模型,描述了正反输送管道的停输再启动过程。利用该数值模拟计算得出的进站油温与管道正常运行的实际值相对误差在2%以内,能够较准确的模拟管道实际运行中的热力变化。在此基础上,以某正反输送管道为例,计算了管道冬季、春秋季和夏季的最大安全停输时间、停输后的沿程温降和冬季再启动过程中管道沿程流量恢复情况,为热油管道的生产管理和安全高效运行提供参考依据。  相似文献   

11.
安全停输时间的数值计算   总被引:9,自引:0,他引:9  
输油系统出现故障,进行抢修或是输油设备进行定期维修都要求停输。停输可作为输油管道运行管理的一种手段,但停输引起的一些问题也应特别注意,尤其是如何确定安全停输时间成为停输工艺的关键。热油管道停输后,管内存油的温度下降,粘度上升。当存油温度降到一定程度时,管道再启动工作就会变得十分困难,甚至发生凝管事故。输油管道安全停输时间计算的准确与否直接影响到管线安全运行及效益,该项计算极其复杂,需要综合考虑整个输油系统各方面的因素。根据热油管道的流动特征,建立了热油管道停输数学模型,并用追赶法计算安全停输时间,从而为指导生产防止凝管事故发生提供了科学的依据。计算结果与实测数据基本相符  相似文献   

12.
裸露管线温降规律研究   总被引:2,自引:0,他引:2  
裸露原油管线停输后,由于管道中油的热容量要比周围土壤的热容量小得多,所以冷却速度要比埋地管道快得多,成为限制允许停输时间的关键。根据裸露热油管道的热力及水力特征,建立了管道停输后的温降数学模型。将模型简化后采用有限差分方法,把热传导偏微分方程转化为线性方程组后,用迭代法求解。编制了停输温降温度场的程序框图,以实际管道为例计算出不同停输时间管道内的温度分布值。将管线停输后管中心、1/2半径及管壁处温度进行比较,制定出可行的管线间歇输送方案。  相似文献   

13.
海底管道停输温降直接决定着海管置换与掺水输送时机,以及停输后能否顺利再启动。为了研究海管各覆盖层的蓄热对停输温降的延缓作用,通过理论分析各层相对流体的蓄能能力大小,模拟计算钢管和土壤蓄热对不同类型管道停输后温降的影响情况,并以渤海两条实际管道为例优化输送方案。结果表明,钢管蓄热总量约为所输原油蓄热总量的一半,所输水量的1/4,所输天然气的4~16倍(根据系统压力的不同);钢管和土壤的蓄热散热对流体停输温降均有一定的延缓作用。对于保温管道,钢管的蓄热散热具有主导作用;不保温管道,土壤的蓄热散热影响很大;对于渤海油田常见的输油海管,考虑钢管的蓄热散热能提高管线出口温度3.5~13.5 ℃;对于混输保温管道,当气油比(GOR)大于10时,钢管蓄热对停输温降的延缓作用尤为明显,有利于安全顺利输送;考虑土壤或钢管的蓄热散热对停输温降的影响可以延缓或取消掺水输送。  相似文献   

14.
针对影响海底输油管道停输的因素复杂,难以对管道安全停输时间做出准确判断的问题,提出了海底输油管道安全停输时间预测的径向基函数(RBF)神经网络模型,综合考虑了各因素对输油管道安全停输的影响。以实测数据为基础,训练网络并验证了模型的预测准确性。研究结果表明,径向基函数神经网络预测模型对训练样本的拟合精度和对验证样本的仿真精度分别达到98.40%和97.33%,可对海底输油管道安全停输时间进行有效预测,为海底输油管道的安全输送提供重要依据。  相似文献   

15.
引入导热形状因子得到同沟敷设管道的管段总传热系数,建立了同沟敷设热油管道停输温降的计算模型,并采用PISO算法对停输瞬态问题进行模拟。利用西部管道沿线的历史数据及西部原油成品油同沟敷设热油管道的实际情况计算了沿线停输温降并进行了对比分析,找出了潜在的停输危险截面,为我国西北地区同沟敷设管道的设计与运营管理提供了参考。  相似文献   

16.
易凝高黏原油在加热输送过程中热量损耗严重, 遇故障停输后热量的散失更为迅速, 当所需停输的 时间超出安全停输时间时就会发生事故。因此, 研究原油的热力计算对管道的安全运行具有重要意义。对比了冬 夏两季原油停输温降的变化规律, 在停输时间不同的条件下, 对温降进行了数值模拟, 计算出原油停输前所需的出 站温度。对停输后的土壤和管道的温度场进行了三维数值模拟, 找出了出站温度不同时停输后原油和土壤温度场 的变化规律。在出站温度达到一定值后, 原油在所需的停输时间内可以保证安全再启动, 不会发生事故或造成安全 隐患。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号