首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 406 毫秒
1.
针对压缩感知中未知稀疏度信号的重建问题,提出一种新的压缩感知的信号重建算法,即自适应正则化子空间追踪(Adaptive Regularized Subspace Pursuit,ARSP)算法,该算法将自适应思想、正则化思想与子空间追踪(Subspace Pursuit,SP)算法相结合,在未知信号稀疏度的情况下,自适应地选择支撑集原子的个数,利用正则化过程实现支撑集的二次筛选,最终能实现信号的精确重构。仿真结果表明,该算法能够精确重构原始信号,重建效果优于SP算法、正则化正交匹配追踪(ROMP)算法、稀疏度自适应匹配追踪(SAMP)算法、压缩采样匹配追踪(CoSaMP)算法等。  相似文献   

2.
吕伟杰  张飞  胡晨辉 《控制与决策》2017,32(8):1528-1532
针对基于压缩感知的压缩采样匹配追踪(CoSaMP)算法迭代次数严重依赖于信号稀疏度,候选原子冗余度大,从而导致最终的支撑原子集选择时间长、选择精度低等问题,提出一种基于双阈值的压缩采样匹配追踪算法.该算法利用模糊阈值进行支撑集候选原子的选择,引入残差与观测矩阵的相关度变化阈值作为迭代停止条件,对图像进行重构.仿真实验表明,所提出的算法重构速度快,重构效果优于CoSaMP算法.  相似文献   

3.
目的 压缩采样匹配追踪(CoSaMP)算法虽然引入回溯的思想,但其原子选择需要大量的观测值且在稀疏度估计不准确时,会降低信号重构精度,增加重构时间,降低重构效率。为提高CoSaMP算法的重构精度,改善算法的重构性能,提出了一种基于广义逆的分段迭代匹配追踪(StIMP)算法。方法 为保证迭代时挑选原子的精确性和快速性,对观测矩阵广义逆化,降低原子库中原子的相干性;原子更新结合正交匹配追踪(OMP)算法筛选原子的准确性与CoSaMP算法的回溯性,将迭代过程分为两个阶段:第1阶段利用OMP算法迭代K/2次;第2阶段以第1阶段OMP算法迭代所得的残差和原子为输入,并采用CoSaMP算法继续迭代,同时改变原子选择标准,从而精确快速地重构出稀疏信号。结果 对于1维的高斯随机信号,无论在不同的稀疏度还是观测值下,相比于OMP、CoSaMP、正则化正交匹配追踪(ROMP)算法和傅里叶类圆环压缩采样匹配追踪(FR-CoSaMP)算法,StIMP算法更加稳健,且具有更高重构成功率;对于2维图像信号,在各个采样率下,StIMP算法的峰值信噪比(PSNR)均高于其他重构算法,在采样率为0.7时,StIMP算法的平均PSNR值比OMP、CoSaMP、ROMP和FR-CoSaMP算法分别高2.14 dB、1.20 dB、3.67 dB和0.90 dB,平均重构时间也较OMP、CoSaMP和FR-CoSaMP算法短。结论 提出了一种改进的重构算法,对1维高斯随机信号和2维图像信号均有更好的重构效率和重构效果,与原算法和现有的主流图像重构方法相比,StIMP算法更具高效性和实用性。  相似文献   

4.
子空间追踪算法(Subspace Pursuit, SP)利用回溯修剪提高了重构准确率,且迭代过程中原子选取更少,复杂度更低,但其性能易受初始支撑集的影响。针对该问题,提出一种基于支撑集先验的多通道脑电信号重构算法。分析了同类别多通道脑电信号支撑集的时空相关性,将同类前一通道的支撑集作为当前通道重构支撑集的先验信息,提升支撑集选取的准确度,进而加快信号重构速度,提高重构的精度。仿真结果表明,在同等采样率下,相较于子空间追踪算法和自适应正则化子空间追踪算法,该算法对多通道脑电信号的重构时间更短,精度更高。  相似文献   

5.
针对压缩采样匹配追踪( CoSaMP)算法重构精度相对较差的问题,为了提高算法的重构性能,提出了一种基于伪逆处理改进的压缩采样匹配追踪( MCoSaMP)算法。首先,在迭代前,对观测矩阵进行伪逆处理,以此来降低原子间的相干性,从而提高原子选择的准确性;然后,结合正交匹配追踪算法( OMP),将OMP算法迭代K次后的原子和残差作为CoSaMP算法的输入;最后,每次迭代后,通过判断残差是否小于预设阈值来决定算法是否终止。实验结果表明,无论是对一维高斯随机信号还是二维图像信号,MCoSaMP算法的重构效果优于CoSaMP算法,能够在观测值相对较少的情况下,实现信号的精确重构。  相似文献   

6.
基于稀疏表示的人脸识别中的子空间追踪(SP)算法的候选原子个数固定与稀疏度相同,因此需要已知信号的稀疏度。针对该缺点,提出一种改进的子空间追踪算法,在选择原子的过程中引入回溯迭代优化思想,候选原子个数随着迭代次数逐一增加。通过移除候选原子集中数量同样逐一增加的可信度较低的原子,使选择的原子与待识别人脸图像具有最相似的结构,能较好地重构人脸。采用稀疏表示分类(SRC)框架,分别与基于SP、SASP、正交匹配追踪(OMP)、OMP-cholesky的人脸识别相比,在ORL和Yale B人脸数据库上的实验结果表明,该算法有最高的识别率。  相似文献   

7.
在块正交匹配追踪算法中,候选集匹配原子块的选择策略对信号重建具有重要作用,但是该算法在迭代选择原子块的过程中,每次选择当次最优迭代的原子块,并不能保证最终迭代性能是最优的。为此,提出一个基于前向预测的最优匹配原子块选择策略的块正交匹配追踪算法,通过预测原子块在未来迭代过程中的性能选择最优匹配的原子块。实验结果表明,与块正交匹配追踪算法相比,该算法的重建误差随前向预测参数的增大而减小。  相似文献   

8.
针对电能质量扰动信号的重构问题,在压缩采样匹配追踪(Compressive sampling matching pursuit,CoSaMP)算法的基础上,为解决原算法的不足,提出一种改进的压缩采样匹配追踪(Modified compressive sampling matching pursuit,MCSMP)算法,并将其应用在电能质量信号的重构上。该算法在候选集的选择阶段采用模糊阈值的方式代替原算法固定个数的选择方式,并以相邻迭代感知矩阵与残差之间的相关度变化量作为算法的停止条件,为回溯过程的剪裁减轻了负担,避免了不必要的迭代,提高了算法的运行效率。仿真实验结果表明:无论是重构性能指标或是重构速度,MCSMP算法的重构结果都优于CoSaMP算法。  相似文献   

9.
压缩感知(CS)是一种新的信号采样、处理和恢复理论,能够显著地降低高频窄带信号的采样频率。针对稀疏度未知信号的重建,提出了步长自适应前向后向追踪(AFBP)算法。不同于固定步长前向后向追踪(FBP)算法,AFBP的步长可变。它利用一种自适应阈值的方法选取前向步长,然后对候选支撑集进行正则化处理以保证其可靠性,接着用自适应阈值与变步长双向控制的方法选取后向步长以减少重建时间。AFBP能够自适应后向删除估计支撑集中部分错误索引以提高信号准确重建概率。在稀疏信号非零值服从常见分布条件下,用AFBP、FBP等算法进行重建的结果表明,AFBP的准确重建概率、重建精度与FBP相当,重建时间明显少于FBP,能够更高效地重建稀疏度未知信号。  相似文献   

10.
《软件工程师》2019,(7):6-8
在基于压缩感知的信号重构问题中,有一类常见情况——未知信号稀疏度。针对此类情况,提出稀疏度自适应分段正交匹配追踪(SparsityAdaptiveStagewiseOrthogonalMatchingPursuit,SAStOMP)算法,该算法将自适应思想、变步长迭代思想与分段正交思想相结合,在未知信号稀疏度的情况下,自适应地选择支撑集原子的个数,最终实现信号的精确重构。仿真结果表明,针对长度为256位的原始信号,该算法重建效果优于正交匹配追踪算法、正则化正交匹配追踪算法和分段正交匹配追踪算法等。  相似文献   

11.
针对目前的贪婪类算法在实际应用中出现的重构遮挡和虚假等问题,本文在分析该问题产生的原因基础上,提出了一种新的贪婪回溯子空间追踪(greedy backtracking subspace pursuit, GBSP)算法。该算法基本思想是在每次的迭代过程中,采用回溯反馈和贪婪精选的思路进行支撑集选择。具体而言,在原子识别阶段,从残差投影中挑选出绝对值最大的 ( 是信号稀疏度)个投影值位置,添加到候选支撑集中,为降低在此步骤中产生的错误概率,每次只将候选支撑集中的前s( )个最大值对应的位置添加到真实支撑集中进行更新;此后再进行投影计算和残差更新,直到完成支撑集的选择。由于新算法结合了正交匹配追踪算法和子空间追踪算法二者的优势,因此可较好的解决重构遮挡与虚假问题,使得压缩感知重构算法更具实用性。  相似文献   

12.
为有效解决压缩采样匹配追踪(Compressive Sampling Matching Pursuit, CoSaMP)算法对稀疏度K值的依赖问题,提高重构精度,提出了一种根据峰值信噪比增减变化趋势来确定最佳迭代次数的CoSaMP改进算法。先将PSNR算式进行数学推导演变,将算式中未知的原始信号巧妙转换为已知信号,并证明了此转换式与PSNR算式有相同增减性,在迭代过程中基于此转换式可根据各列稀疏度的不同,自适应的确定不同列的最佳迭代次数,从而保证更高的重构精度。理论分析和实验仿真表明,改进的CoSaMP算法比原有算法有更理想的重构效果,与其它重构算法相比有更高的重构成功率,并且更具高效性和实用性。  相似文献   

13.
压缩感知是一种新型的信号采样及重构理论,高效的信号重构算法是压缩感知由理论转向实际应用的枢纽。为了更精确地重构出原始稀疏信号,本文提出一种基于二次筛选的回溯广义正交匹配追踪算法。首先采用内积匹配准则选出较大数目的相关原子,提高原子的利用率。其次利用广义Jaccard系数准则对已选出的原子进行二次筛选,得到最匹配的原子,优化原子选取方式。实验结果表明,在不同稀疏度和观测值下进行信号重构,相比于回溯广义正交匹配追踪算法、正交匹配追踪算法及子空间追踪算法,本文算法在重构误差及重构成功率方面有较大的优越性。  相似文献   

14.
Recently, compressive sensing (CS) has offered a new framework whereby a signal can be recovered from a small number of noisy non-adaptive samples. This is now an active area of research in many image-processing applications, especially super-resolution. CS algorithms are widely known to be computationally expensive. This paper studies a real time super-resolution reconstruction method based on the compressive sampling matching pursuit (CoSaMP) algorithm for hyperspectral images. CoSaMP is an iterative compressive sensing method based on the orthogonal matching pursuit (OMP). Multi-spectral images record enormous volumes of data that are required in practical modern remote-sensing applications. A proposed implementation based on the graphical processing unit (GPU) has been developed for CoSaMP using computed unified device architecture (CUDA) and the cuBLAS library. The CoSaMP algorithm is divided into interdependent parts with respect to complexity and potential for parallelization. The proposed implementation is evaluated in terms of reconstruction error for different state-of-the-art super-resolution methods. Various experiments were conducted using real hyperspectral images collected by Earth Observing-1 (EO-1), and experimental results demonstrate the speeding up of the proposed GPU implementation and compare it to the sequential CPU implementation and state-of-the-art techniques. The speeding up of the GPU-based implementation is up to approximately 70 times faster than the corresponding optimized CPU.  相似文献   

15.
压缩采样匹配追踪(CoSaMP)算法的性能受初始支撑集选择的制约,初始支撑集选择不准确不仅影响重构精度,还会降低重构速度。针对该问题,将图像在稀疏域的结构特性引入到CoSaMP算法中,提出了支撑集相似度的概念;利用数字图像相邻行之间原子支撑集的相似性,提出了基于行间支撑集相似度的CoSaMP算法。实验结果表明,在同等采样率的条件下, 与传统的CoSaMP算法相比,所提算法在不增加算法时间复杂度的同时提高了重构质量 ,峰值信噪比提高了0.6~2.5dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号