首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
针对转子系统的故障特征,提出了基于多变量预测模型(variable predictive mode based class discriminate,简称VPMCD)和模糊熵的故障诊断方法。VPMCD方法是根据所提取的全部或部分特征值之间具有的某种内在关系建立预测模型,并以建立的变量预测模型进行模式识别。首先,对转子振动信号进行经验模态分解(empirical mode decomposition,简称EMD),得到若干个内禀模态函数(intrinsic mode function,简称IMF)分量;接着,提取包含主要故障信息的前几个IMF分量的模糊熵组成故障特征向量矩阵;然后,采用VPMCD方法建立预测模型;最后,通过建立的VPMCD预测模型区分转子的工作状态和故障类型。实验分析结果表明,基于VPMCD和模糊熵的故障诊断方法可以准确、有效地识别转子系统的工作状态和故障类型。  相似文献   

2.
针对随机噪声和局部强干扰影响经验模态分解(Empirical mode decomposition,EMD)质量的问题,提出一种形态奇异值分解滤波消噪方法,并将其与EMD相结合形成一种新的故障特征提取方法。该方法首先对原始振动信号进行相空间重构和奇异值分解(Singular value decomposition,SVD),根据奇异值分布曲线确定降噪阶次进行SVD降噪,再形态滤波,最后把消噪后的信号进行EMD分解,利用本征模模态分量(Intrinsic mode function,IMF)提取故障特征信息。对仿真信号和实际轴承故障数据的应用分析表明,该方法能有效地提取轴承故障特征,诊断轴承故障,还可以减少EMD的分解层数和边界效应,提高EMD分解的时效性和精确度。  相似文献   

3.
提出了一种基于总体平均经验模态分解(ensemble empirical mode decomposition,简称EEMD)奇异值熵和支持向量机的齿轮故障诊断方法.首先,通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模式分量,将得到的若干个本征模式分量自动形成初始特征向量矩阵;然后,对该矩阵进行奇异值分解,提取其奇异值作为故障特征向量,并对其进行归一化,求得奇异值熵,根据奇异值熵值大小可以判断齿轮的故障类型;最后,将奇异值故障特征向量作为支持向量机的输入,判断齿轮的工作状态和故障类型.试验结果表明,即使在小样本情况下,基于EEMD奇异值分解和支持向量机的故障诊断方法仍能有效地识别齿轮的工作状态和故障类型.  相似文献   

4.
基于经验模式分解(empirical mode decomposition,简称EMD)分解出的基本模式分量往往会因为原始数据中的一些异常数据和高频噪声而丧失明确的物理意义。因此,提出了一种基于系统重构吸引子奇异值分解(singular value decomposition,简称SVD)降噪的EMD分解方法。在改进方法中,原始信号经SVD降噪后分解出了原信号中的有用成分和冗余成分,对有用成分进行EMD分解可以减少原信号中冗余成分对EMD分解能力的干扰,提高EMD分解能力,使得分解出的基本模式分量更加具有实际意义,更加有利于特征的提取。  相似文献   

5.
基于EMD-SVD和CNN的旋转机械故障诊断   总被引:1,自引:0,他引:1  
为解决旋转机械振动信号复杂且难以提取有效故障特征的问题,提出了一种经验模态分解(empirical mode decomposition,简称EMD)、奇异值分解(singular value decomposition,简称SVD)和深度卷积网络(Convolutional Neural Network,简称CNN)相结合的故障诊断方法。首先,通过EMD方法将故障信号分解成若干个固有模态分量(intrinsic mode function,简称IMF),构造时域与频域空间状态矩阵;其次,利用SVD方法对空间状态矩阵进行分解得到奇异值数组,构造时域与频域奇异值特征矩阵;最后,将提取的奇异值特征矩阵输入到CNN中进行模式识别。将该方法分别应用于滚动轴承与齿轮箱故障诊断中,在西储大学滚动轴承数据集、PHM2009直齿齿轮箱数据集上均取得了很好效果,正确率优于将原始信号直接输入到CNN中等几种对比方法,验证了该方法的优越性。  相似文献   

6.
何雷  刘溯奇 《机械传动》2021,45(5):169-176
针对车辆变速箱工作环境恶劣、故障模式难以识别的问题,在现有方法基础上,提出了一种基于经验模态-小波包结合的二次模态分解(Two-layer-mode decomposition,TMD)和奇异值分解(Singular value decomposition,SVD)特征值提取方法,并结合粒子群(POS)-BP神经网络应用于变速箱故障诊断中.首先,在自行搭建的实验台上采集变速箱正常、滚动体故障、外圈裂纹、齿轮磨损4种典型状态下的振动信号;然后,用EMD分解提取信号前5个IMF分量,由于IMF1频谱依然较复杂,采用小波包继续进行2层分解;最终,由二次模态分解得到8个子序列,构建信号分量矩阵,再提取分量矩阵的奇异值作为特征值,将特征值输入构建好的POS-BP神经网络诊断模型中,根据输出识别变速箱故障类型.分析结果表明,该方法能有效应用于特种车辆变速箱故障诊断,诊断正确率达到92%,为复杂工况下变速箱状态识别提供了一种有效的参考途径.  相似文献   

7.
针对奇异值分解(SVD)提取工业机器人交叉滚子轴承振动信号微弱故障特征分量时,出现奇异值分辨率不足的问题,提出了一种基于最大分辨率奇异值分解(MRSVD)-奇异值分解(SVD)与变量预测模型模式识别(VPMCD)的工业机器人交叉滚子轴承的故障诊断方法。首先,以最大奇异值分辨率原则将一维振动信号构造成了Hankel矩阵,采用奇异值分解方法对Hankel矩阵进行了分解,得到了其奇异值序列,根据奇异值曲率谱理论选择有效奇异值,并进行了重构,得到了经降噪后的高信噪比信号,以重构信号构建了相空间矩阵,进行了二次奇异值分解,得到了其故障特征分量;然后,计算了故障特征分量的特征参数,构建了其特征向量;最后,采用了VPMCD分析了特征向量,完成了对交叉滚子轴承故障类型的识别,并与其它方法进行了识别准确率对比。研究结果表明:采用该方法对工业机器人交叉滚子轴承进行故障诊断,得到的故障类型识别准确率为98.66%,比SVD与共振解调相结合方法提高了9%;该方法通过构建最大奇异值分辨率矩阵提高了奇异值分辨率,可完整提取出工业机器人交叉滚子轴承振动信号的微弱故障特征分量,获得了更高的故障类型识别准确率。  相似文献   

8.
针对齿轮振动信号非线性、非平稳的特点,提出一种基于集合经验模态分解(EEMD)与奇异熵增量谱的齿轮故障特征提取方法。首先,利用EEMD方法将齿轮振动信号分解为若干个平稳的本征模态函数(IMF)分量。EEMD方法利用正态分布白噪声的二进尺度分解特性,能够有效抑制经验模态分解(EMD)中的模态混叠现象。但由于背景噪声和残余辅助白噪声的影响,EEMD分解得到的IMF分量难以准确提取齿轮故障特征。利用奇异值分解(SVD)对IMF分量进行消噪和重构,根据奇异熵增量谱确定重构阶次,准确地提取齿轮的故障特征频率。仿真信号分析和齿轮箱齿轮故障实验验证了该方法的准确性和有效性。  相似文献   

9.
提出一种基于自适应白噪声完整经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)奇异值熵和支持向量机(support vector machine,SVM)的转子故障诊断方法。利用CEEMDAN方法首先对非平稳的转子振动信号分解得到若干个表征信号自身特性的固有模态函数(intrinsic mode function,IMF),并通过虚假IMF分量判别法,剔除对于故障特征不敏感的IMF,以保证故障信息提取的准确性和有效性,在此基础上产生初始特征向量矩阵。并对此矩阵进行奇异值分解得到矩阵奇异值,使其作为故障特征向量,通过归一化处理得到奇异值熵,并以此作为SVM的输入,对转子的工作状态进行识别。研究结果表明:该方法可有效应用于转子故障诊断,实现对转子工作状态和故障类型的有效诊断。  相似文献   

10.
将奇异值分解(singular value decomposition,简称SVD)与集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)进行结合,提出一种适用于滚动轴承弱故障状态描述的敏感特征提取方法。为提高信号故障信息的提取质量,对采集信号进行相空间重构得到一种Hankel矩阵。根据该矩阵的奇异值差分谱,确定降噪阶次进行SVD降燥。用EEMD分解降噪后的信号可获得11个本征模态函数(intrinsic mode function,简称IMF)和1个余项。依据建立的峭度-均方差准则,筛选出一个能够有效描述故障状态的敏感IMF分量,计算其相应的Teager能量算子(Teager energy operator,简称TEO),对此TEO进行Fourier变换,实现了对滚动轴承弱故障模式的有效辨识。用美国凯斯西储大学公开的滚动轴承故障信号对所建立的方法与传统EEMD-Hilbert法和EEMD-TEO方法进行对比,结果表明:经本方法提取的敏感特征能准确突显滚动轴承故障频率发生的周期性冲击,可准确识别其故障类型。  相似文献   

11.
由于经验模式分解(empirical mode decomposition,简称EMD)将非线性非平稳信号分解成为一系列线性、平稳的本征模函数(intrinsic mode function,简称IMF)信号,针对单通道大跨径桥梁挠度信号分离问题,结合盲源分离和经验模式分解各自优点,提出基于经验模式分解的盲源分离方法。利用奇异值分解(singular value decomposition,简称SVD)估计信号源数目,根据源信号数目将单通道挠度信号和其本征模函数重组为多通道输入信号,应用独立分量分析(independent component analysis,简称ICA)理论中的快速独立分量分析(fast independent component analysis,简称FastICA)算法对输入信号进行分解,实现桥梁挠度信号各分量的分离。仿真研究表明,该方法能较好地解决ICA模型源数估计和单通道挠度信号盲源分离难题。  相似文献   

12.
为充分利用振动信号进行故障辨识,提出一种基于集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)奇异值熵判据的滚动轴承故障诊断方法。首先,对滚动轴承的振动信号进行EEMD分解获得若干个本征模态函数(intrinsic mode function,简称IMF),并根据一种IMF分量故障信息含量的评价指标(即峭度、均方差和欧氏距离)选出能够表征原始信号状态的分量进行信号重构;其次,利用奇异值分解技术对重构信号进行处理,结合信息熵算法求取其奇异值熵;最后,利用奇异值熵的大小判断滚动轴承的故障类别。用美国西储大学滚动轴承振动信号对所述方法进行验证的结果表明,相比传统的EMD奇异值熵故障诊断方法,本方法能够清晰的划分出滚动轴承不同工作状态的类别特征区间,而且具有更高的故障诊断精度。  相似文献   

13.
由于经验模式分解(empirical mode decomposition,简称EMD)将非线性非平稳信号分解成为一系列线性、平稳的本征模函数(intrinsic mode function,简称IMF)信号,针对单通道大跨径桥梁挠度信号分离问题,结合盲源分离和经验模式分解各自优点,提出基于经验模式分解的盲源分离方法。利用奇异值分解(singular value decomposition,简称SVD)估计信号源数目,根据源信号数目将单通道挠度信号和其本征模函数重组为多通道输入信号,应用独立分量分析(independent component analysis,简称ICA)理论中的快速独立分量分析(fast independent component analysis,简称FastICA)算法对输入信号进行分解,实现桥梁挠度信号各分量的分离。仿真研究表明,该方法能较好地解决ICA模型源数估计和单通道挠度信号盲源分离难题。  相似文献   

14.
基于改进EMD和谱峭度法滚动轴承故障特征提取   总被引:1,自引:0,他引:1  
针对滚动轴承故障信号的强背景噪声特点,提出一种基于改进经验模态分解(empirical mode decomposition,简称EMD)与谱峭度法的滚动轴承故障特征提取方法.首先,利用EMD方法对原故障信号进行分解,得到若干平稳固有模态分量(intrinsic mode function,简称IMF);然后,采用灰色关联度与互信息相结合方法剔除传统EMD分解结果中存在的虚假分量;最后,运用谱峭度法和包络解调方法对真实IMF分量进行分析,提取故障特征频率.通过对实际滚动轴承故障信号的应用表明,该方法可有效地提取滚动轴承故障特征,且能够取得比传统包络解调分析更好的效果.  相似文献   

15.
基于粒子群优化LS-WSVM的旋转机械故障诊断   总被引:2,自引:1,他引:1  
为了更好地进行旋转机械故障诊断,提出一种粒子群优化(particle swarm optimization,PSO)最小二乘小波支持向量机(least square wavelet support vector machine,LS-WSVM)的故障诊断模型.先将故障信号经验模式分解(empirical mode decomposition,EMD)为多个内禀模态分量(intrinsic mode function,IMF)之和,再提取表征故障特征的IMF分量能量构造特征向量输入到PSO优化的LS-WSVM进行故障模式识别.EMD分解可自适应提取故障特征信号,PSO参数优化可快速准确得到LS-WSVM的全局最优参数,提高LS-WSVM的故障诊断精度和自适应诊断能力.通过滚动轴承的故障模拟实验验证了该方法的有效性.  相似文献   

16.
故障特征提取的精确性和分类识别的高效率是提高故障诊断准确率和速度的关键,针对此问题,提出一种基于经验模式分解(empirical mode decomposition,EMD)近似熵和最小二乘支持向量机(least square support vector machine,LS-SVM)的机械故障诊断新方法.利用EMD良好的局域化特性和近似熵表征信号复杂性规律来量化故障特征,再与LS-SVM相结合进行故障类型识别.首先,对故障振动信号进行EMD 分解,得到若干个反映故障信息的本征模函数(intrinsic mode function,IMF);其次,选取前4个IMF的近似熵值作为信号的特征向量;最后将构造的特征向量输入到LS-SVM分类器进行故障类型识别.仿真表明,该方法能有效地提取故障特征,与传统的BP(back propagation)络相比,具有训练样本少、训练时间短、识别率高等优点.  相似文献   

17.
针对转子振动信号的非平稳性以及微弱故障特征难以提取的问题,提出一种基于集合经验模式分解(ensemble empirical mode decomposition,简称EEMD)的奇异值熵和流形学习算法相结合的故障特征提取方法。首先,对原始振动信号进行EEMD分解,得到若干本征模态函数(intrinsic mode function,简称IMF)分量,根据峭度 欧式距离评价指标选取故障信息丰富的敏感分量,组成初始特征向量,求其奇异值熵;其次,利用近邻概率距离拉普拉斯特征映射算法(nearby probability distance Laplacian eigenmap,简称NPDLE)对奇异值熵组成的特征矩阵进行降维处理;最后,将得到的低维特征子集输入到K-近邻(K-nearest neighbor,简称KNN)中进行模式辨识。用一个双跨度转子实验台数据集和Iris仿真数据集对所提方法进行了验证,结果表明,IMF奇异值熵和NPDLE相结合的方法可以有效地实现转子故障特征提取,提高了故障辨识的准确性。  相似文献   

18.
王俊雄  周俊 《机械科学与技术》2021,40(12):1871-1876
针对在观测信号数目小于机械故障振动信号源数目的欠定情况下,源信号的个数难以估计的问题,提出一种变分模态分解(Variational mode decomposition,VMD)和奇异值分解(Singular value decomposition,SVD)相结合的盲源数目估计方法.首先利用VMD对振动信号进行分解,得到若干本征模态函数分量(Intrinsic mode function,IMF),然后对IMF进行重新组合得到多维观测信号的协方差矩阵,最后依据奇异值分解的结果来对信号源数目进行最终确定.仿真信号分析验证了该方法的有效性,将该方法运用到轴承复合故障振动信号中,分析结果表明,该方法能够实现欠定情况下源数目的可靠估计.  相似文献   

19.
轴承作为旋转机械中应用广泛的一类支撑部件,其故障将严重影响设备的安全运行,为了实现对轴承故障的有效诊断,提出一种量子粒子群优化(Quantum particle swarm optimization,PSO)支持向量机(Support vector machine,SVM)的故障诊断模型,首先采用经验模式分解(Empirical mode decomposition,EMD)方法将故障信号分解为多个固有模态分量(Intrinsic mode function,IMF)之和,其次,提取表征轴承故障特征的IMF分量能量构造特征向量,最后采用QPSO优化的SVM模型对故障模式进行识别。实验结果表明,所提出的轴承故障诊断方法具有自适应提取轴承故障特征和高精度的自适应诊断能力。  相似文献   

20.
针对转子故障信号的非平稳性以及敏感故障特征无法有效提取的问题,将变分模态分解(variational mode decomposition,VMD)的Volterra模型和奇异值熵相结合,提出一种故障诊断方法。对影响VMD分解准确性的参数选取方法进行了深入研究,给出了相关问题的解决策略。首先,对不同工况下转子实测信号进行VMD分解,利用能量熵增量选取对故障特征敏感的固有模态函数(intrinsic mode function,IMF)进行相空间重构,以建立Volterra自适应预测模型,将模型参数作为初始特征向量矩阵。然后,对初始特征向量进行奇异值分解以获取奇异值熵和奇异值特征向量矩阵,用于描述转子的故障特征。最后,采用模糊C均值(fuzzy c-means,FCM)算法对转子工作状态和故障类型进行识别。试验结果表明,所提方法可有效实现转子故障的特征提取及类型识别。通过同经集合经验模态分解(ensemble empirical mode decomposition,EEMD)相比,证明了该方法具有更有效的故障特征提取性能,是一种可行的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号