首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
NdFeB永磁体表面磷化处理及其磷化膜的研究   总被引:2,自引:0,他引:2  
为了提高NdFeB磁体的耐蚀性,并验证磷化膜的组成,以自制的磷化液在NdFeB永磁体表面进行磷化处理,并采用SEM观测了采用不同表调剂处理NdFeB永磁体表面所形成的磁化膜微观形貌,测试分析了磷化膜的抗腐蚀性能;采用EDS、XRD、ICP-AES等对磷化膜进行了研究.结果表明:采用钛系表调剂可以在烧结NdFeB磁体表面获得均匀密实的磷化膜,并具有较强的耐腐蚀性;采用锌系磷化液在烧结NdFeB磁体表面进行磷化处理形成的磷化膜的组成与在钢铁基体上形成磷化膜的相组成相同,仍然是Zn3(PO4)2·4H2O及Zn2Fe(PO4)2·4H2O;磷化过程中,Nd参加了反应,形成沉渣进入磷化液中.  相似文献   

2.
使用商品磷化液wes-01在工业喷淋线上实现了纯铝的锌系磷化,研究了磷化温度、游离酸度、总酸度及促进剂浓度对磷化膜性能的影响,并用扫描电镜、能谱及X射线衍射分析研究了磷化膜的形貌和结构,探讨了磷化反应机理。结果表明:磷化液wes-01在游离酸度0.4~1.3点,总酸度17.0~25.0点,促进剂2.0~4.0点,温度20~40℃使用时,可以获得性能良好的磷化膜;铝的磷化膜主要由枣核状结晶体Zn3(PO4)2.4H2O组成,含有细小的白色混合结晶体ZnAl2O4和AlPO4;磷化过程中先生成细小的白色结晶即ZnAl2O4,之后在其上迅速生成AlPO4结晶体,Zn3(PO4)2.4H2O结晶体则围绕ZnAl2O4和AlPO4的混合结晶周边生长,直至完成磷化。  相似文献   

3.
褚旭  彭杨  何源  周宪民  吴伏生  周瑜 《材料保护》2021,54(2):104-108
为进一步促进中温磷化技术在钢管塑性加工中的应用,通过扫描电镜(SEM)、X射线衍射仪(XRD)、湿热试验箱、硫酸铜点滴试验法和退膜法对中温磷化处理的钢管的耐蚀性能进行了分析,确定了最佳的中温磷化工艺.研究表明,最佳的中温磷化工艺参数为:总酸度30~40 mg/L,游离酸度4.2~5.4 mg/L,促进剂浓度3~4 mg/L,磷化温度70℃,磷化时间10 min;通过最佳中温磷化工艺所制备的钢管磷化膜结晶致密,晶粒尺寸均匀,磷化膜主要成分为Zn2Fe(PO4)·4H2O,磷化膜重可达到7.42 g/m2,磷化膜层平均厚度为3.0 μm;钢管耐硫酸铜腐蚀时间超过300 s,耐湿热性能显著提升.  相似文献   

4.
AZ31B镁合金表面锌系磷化膜制备工艺及性能研究   总被引:6,自引:0,他引:6  
采用极化曲线分析方法(Tafel)及扫描电子显微镜(SEM)对AZ31B镁合金在不同磷化时间及不同磷化温度条件下所形成的锌系磷化膜的防腐性能及表面微观形貌进行了研究,并应用X射线衍射仪(XRD)、能谱仪(EDS)对最佳工艺条件下所形成的磷化膜的相组成以及磷化膜的成分进行了研究.结果表明:磷化时间及磷化温度对AZ31B镁合金磷化膜的防腐性能有较大影响,其最佳磷化时间为5min,最佳磷化温度为50℃;磷化膜的成分为Zn3(PO4)2·4H2O,Zn2Mg(PO4)2以及少量的单质Zn;在锌系磷化液中AZ31B镁合金中的Mg在微阳极发生溶解而Al没有溶解.此外还探讨了AZ31B镁合金表面的磷化反应机理.  相似文献   

5.
金雷  王新强  赵兴强  张文婷  郭培  方亮 《材料导报》2007,21(Z2):459-460
研究了高温锰系磷化膜在45#钢上的生长过程.分别用SEM和XRD观察和分析了磷化膜的表面形貌和成分,测量了磷化膜膜重随时间变化的关系.结果表明:磷化膜的晶体颗粒为块状,主要成分是(MnFe)5 H2·(PO4)4·4H2O,磷化的成膜时间是1 min.  相似文献   

6.
免水洗钡盐改性常温复合磷化研究   总被引:2,自引:0,他引:2  
钢铁试片在由磷酸、氧化锌、硝酸钙、硝酸钡、钼酸铵等组成的钡盐改性复合磷化液中常温快速磷化后,自然干燥3 h以上,即生成免水洗的彩色磷化膜.采用SEM和EDS技术对磷化膜形貌和元素含量进行了分析.结果表明:免水洗的磷化膜由Fe2+、Zn2+、Ca2+、Ni2+、Mn2+、Ba2+的磷酸盐及少量的钼酸盐等组成,膜晶粒尺寸≤2μm,膜连续、致密,膜重约1.5 g/m2,耐3%NaCl溶液腐蚀约2 h,喷涂铁红环氧底漆后附着力达1级.  相似文献   

7.
钢球表面磷化着亮黑色的工艺研究   总被引:1,自引:0,他引:1  
周元贵  张黔 《材料保护》2005,38(2):34-36
成品轴承钢球表面的磷化膜一般较粗糙,为此,对含硝酸钡的磷化液在钢球表面获得亮黑色磷化膜的配方进行了试验研究.结果表明,成分为30 g/L Ba(NO3)2,10 g/L Zn(H2PO4)2,15 g/L Zn(NO3)2的磷化液,在磷化温度80~85 ℃,磷化时间10 min的条件下可在钢球表面获得膜厚为2 μm的亮黑色磷化膜,膜层抗CuSO4点蚀时间大于2 min.  相似文献   

8.
稀土作磷化促进剂,稳定性好,有利于环保,有利于提高磷化效率和质量.在磷化液中加入不同稀土(Re)氯化物,探讨了其对6061铝合金磷化膜膜重的影响.利用SEM和XRD观测了磷化膜晶粒的形貌和粒径.结果表明:适量(10~50 mg/L)稀土离子的加入使得磷化膜膜重增加,晶粒细化,在此范围内Re含量越大、Re离子半径越大,则膜重越大.而当稀土含量超过60 mg/L时,反而不利于磷化膜的生成,磷化膜膜重减轻.  相似文献   

9.
高温锰系磷化对部分高合金钢处理效果不佳.为此,对25Cr2Ni4WA合金钢黑色锰系磷化工艺进行了研究,通过正交试验,分析了磷化过程中总酸、酸比、Fe2+浓度、表调时间、磷化时间等因素对磷化膜耐蚀性能和膜重的影响.结果表明,适当的总酸、酸比、磷化时间以及降低Fe2+浓度和表调时间有利于提高耐蚀性能;适当的表调时间及增加总酸、酸比、Fe2+浓度和磷化时间有利于增加膜重.结果表明,为提高耐蚀性能,应尽量使磷化膜晶粒细小均匀、致密;获得较佳磷化膜耐蚀性能的工艺参数为:总酸110点,酸比6.0,0.6g/L Fe2+,表调时间20s,磷化时间20min;膜重较佳的工艺参数为:总酸130点,酸比7.0,1.8g/L Fe2+,表调时间40s,磷化时间20min.  相似文献   

10.
目前国内外关于电化学辅助磷化的研究报道较少。采用硫酸铜点滴试验、塔菲尔极化曲线研究了电化学辅助制备磷化膜的耐蚀性,探究电化学辅助磷化的最佳配方及工艺条件。通过单因素试验优化磷化液组分,通过正交试验优化工艺条件。结果表明,电化学辅助可以显著降低磷化温度、缩短磷化时间、减少磷化渣,优选出的磷化液组成为:5.00 g/L ZnO,13.00 mL/L磷酸(85%),20.00 g/L Zn(NO_3)_2·6H_2O,1.00 g/L酒石酸钾钠,1.00 g/L NH_4HF_2,1.20 g/L NaClO_3,5.00 g/L磷酸二氢锌,0.08 g/L CuSO_4;最优工艺参数为电流密度1.2 A/dm~2,温度35℃,通电时间7 min。最优工艺下所得磷化膜耐硫酸铜点滴试验时间达860 s;磷化时间1 min时,所得磷化膜硫酸铜点滴试验耐蚀性为61 s(远优于化学磷化的19 s),磷化膜外观均匀、致密。  相似文献   

11.
介绍了一种高温锰盐磷化工艺,讨论了槽液总酸度和游离酸度、铁离子含量、磷化温度等因素对锰盐磷化膜质量的影响情况,总结了生产应用中的工艺控制要点.该工艺磷化膜无脆性、耐蚀性高,很好地满足了用户要求.  相似文献   

12.
黑色复合耐磨磷化膜的摩擦学性能   总被引:3,自引:0,他引:3  
复合磷化膜耐磨性较好,但研究报道较少,因而其推广应用受到了限制.按磷化的成膜机理,设计、优选出了耐磨复合磷化液配方、最佳磷化工艺,制备出复合磷化膜并通过摩擦试验检测磷化膜的摩擦学性能.结果表明:复合磷化膜呈黑色、细密针孔状结构;复合磷化膜能显著提高摩擦副表面的摩擦学性能,摩擦系数从0.8降到0.3;磷化前的表面调整有利于形成细密、性能好的磷化膜;磷化作为喷涂固体润滑剂的前处理,能提高固体润滑涂层的持久性.  相似文献   

13.
直接在7075铝合金表面喷涂油漆,其结合力和防护性能较差。先对7075铝合金作磷化处理再喷涂环氧底漆和聚氨酯面漆。应用X射线衍射仪、Autolab电化学工作站和扫描电子显微镜及加温耐盐水试验对磷化膜的物相组成、成分、表面形貌及其耐蚀性进行了研究;探讨了磷化处理对7075铝合金表面漆膜层结合力及耐腐蚀性能的影响。结果表明:7075铝合金表面磷化动力学过程分为基体阳极溶解、表面形核及膜层增厚3个阶段,主要得到了由Mn Zn2(PO4)2,Zn3(PO4)2,Al PO4等物相组成的多孔磷化膜; 7075铝合金表面的自腐蚀电流由磷化前的40.17μA/cm^2降低到磷化后的7.37μA/cm^2,磷化提高了其耐点蚀性能;磷化处理还极大地提高了漆膜与7075铝合金的附着力和耐腐蚀性。  相似文献   

14.
锌合金活泼、易腐蚀,在其表面直接喷涂涂层的结合力较差,为了提高锌合金表面与涂层的结合力,对锌合金基材作磷化处理和磷化后封闭处理再喷涂聚氨酯漆膜,探讨了磷化处理及封闭处理对锌合金表面膜层间结合力的影响,并应用扫描电镜(SEM)和X射线衍射仪(XRD)对磷化膜表面形貌、物相组成及成分等进行研究。结果表明:锌合金表面直接喷涂聚氨酯漆膜,漆膜与锌合金基材的结合力差,结合力等级大于5级;而锌合金表面不管是磷化后直接喷漆还是磷化后封闭处理再喷漆均能极大提高涂层与基体的结合力,其结合力等级均小于2级;封闭处理有助于降低磷化膜的孔隙率,磷化膜经封闭处理后孔隙率由13.9%降到3.5%;封闭处理会降低磷化膜与漆膜的结合力。  相似文献   

15.
为了克服传统锌系磷化工艺的诸多缺点,在传统的锌系磷化液中加入马丙共聚物和铜脲配位化合物,通过正交试验优选出了一种环保、单组分、低温无渣的新型磷化工艺,并将此工艺制得的磷化膜的性能、形貌、成分与普通锌系磷化膜进行比较。结果表明:最佳的新型磷化工艺为1.0 g/L铜脲配位化合物,1.5 g/L氧化锌,15.0mL/L磷酸,10.0 mL/L马丙共聚物,磷化时间15 m in,磷化温度20℃;最佳工艺时磷化液游度酸度8点,总酸度30点;新型工艺制得的磷化膜为均匀致密的球状结晶,耐蚀性、漆膜附着力、抗冲击力均优于普通锌系磷化膜。  相似文献   

16.
研究了双钙钛矿结构化合物Sr2FeMoO6中Fe位的Cu2+离子替代效应,样品中Cu2+离子替代Fe3+离子没有引起结构变化,但导致样品B位离子有序度降低.并且随Cu2+离子的掺入,室温下样品的磁化强度迅速下降.而居里温度TC随Cu2+的掺入有所上升,因此认为Cu2+离子的掺入破坏了Fe3+-Mo5+反铁磁耦合,抑制了样品的原有铁磁性,促使Mo5+向Mo6+的转变和Fe3+向Fe2+的转变引起Fe/Mo反位无序的增加,形成了Fe3+-Fe2+反铁磁耦合团簇.  相似文献   

17.
孙雅茹  苏晓贺 《材料保护》2011,44(11):42-44,8
电化学磷化可以快速获得磷化膜,提高镁合金的耐蚀性,目前就电化学磷化工艺条件对膜层的影响研究尚不深入。为此,采用扫描电镜和电化学方法研究了电流密度和添加剂对镁合金电化学磷化膜耐蚀性的影响。结果显示:电流密度为4.oA/din。时基础磷化液中所得磷化膜表面致密均匀,具有良好的耐蚀性;以0.5g/L酒石酸和5.Og/L磷酸二...  相似文献   

18.
为了研究一步法黑色磷化膜的生长过程,测试了钢铁基体在黑色磷化液中的循环伏安曲线及时间电位曲线,利用扫描电镜观察了膜的生长过程及不同温度条件下膜层形貌,分析了膜重随时间的变化,对成膜机理进行了探讨.研究表明:在适宜的磷化时间及磷化温度下,黑色磷化膜晶体数量多,尺寸适中,孔隙小,膜层致密,均匀,厚度适中,色泽乌黑,采用一步法制备黑色磷化膜,可减少生产工序,降低成本,所得膜层性能优异.在适宜的磷化时间内,黑色磷化膜的平均膜重为52.7 g/m2,在磷化膜中生成氧化铜从而使磷化膜成黑色.  相似文献   

19.
在低温磷化条件下, 在磷化液中加入Ca 2+并以臭氧作为促进剂, 在A3碳钢表面制备了磷化膜。通过SEM、
XRD、EDS、FT--IR以及腐蚀电化学测试等手段对磷化膜进行表征, 研究了Ca 2+和臭氧对磷化膜的结构和性能的影响。结果表明, 在磷化液中添加Ca 2+所得磷化膜的质量随着Ca 2+浓度的提高而减小, 添加Ca 2+可细化磷化膜的晶粒、提高磷化膜的致密度和耐蚀性能; 溶解在磷化液中的臭氧具有细化磷化膜晶粒和促进晶粒生长的作用, 能大幅提高磷化膜晶粒的形核率和磷化膜的主体形成速度。当磷化液的pH=2.70、Ca 2+浓度为1.8 g/L、臭氧含量为2.50 mg/L时, 磷化膜的质量为5.46 g/m2, 其耐硫酸铜点滴腐蚀时间超过122 s, 在5% NaCl溶液中的腐蚀电流为0.50 μA/cm2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号