首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 35 毫秒
1.
将z轴微机械陀螺两个模态的机械噪声效应等效为各自在单位噪声力作用下的振动,根据陀螺的工作原理得到两个噪声力作用下陀螺敏感模态的机械输出噪声。建立了包含运放和电路板非理想因素在内的接口电路的噪声模型。结合机械噪声模型和接口电路模型噪声,建立了包括结构参数和电路最小检测电容量在内的陀螺的噪声等效输入角速度模型,为陀螺的设计优化提供了参考。分析了结构参数对陀螺等效输入角速度噪声影响,并采用两个参数不同的电容式z轴微机械陀螺进行了实验。结果表明,通过结构参数的调整,将电容式z轴微机械陀螺的输出噪声从414μV/Hz降低至235μV/Hz。  相似文献   

2.
采用Jazz0.18μm RF CMOS工艺设计并实现应用于MB-OFDM超宽带频率综合器的4.224GHz电感电容正交压控振荡器。通过解析的方法给出了电感电容正交压控振荡器的模型,并推导出简洁的公式解释了相位噪声性能与耦合因子的关系。测试结果显示,核心电路在1.5V电源电压下,消耗6mA电流,频率调谐范围为3.566~4.712GHz;在主频频偏1MHz处的相位噪声为-119.99dBc/Hz,对应的相位噪声的FoM(Figure-of-Merit)为183dB;I、Q两路信号等效的相位误差为2.13°。  相似文献   

3.
读出电路位于微传感器系统信号通路的最前端,是决定系统性能的关键因素。本文针对音叉式体硅微陀螺的具体应用,提出了一种低噪声电容读出电路,芯片采用斩波技术降低了电路的低频1/f噪声、失调电压以及参考电压失配的影响,提高了读出电路的分辨率和动态范围;提出一种噪声电荷转移的分析方法,用于分析和预测读出电路的噪声性能;建立一种简化的微陀螺传感器仿真模型,用于模拟读出电路对微传感器的响应。读出电路在0.35 m 2P4 M 标准CMOS工艺下设计流片,并与微传感器进行了联合应用,芯片面积为22.5 mm2,在5 V电源电压,100 kHz的时钟频率下,实现了4 aF的电容分辨率和94 dB的动态范围。  相似文献   

4.
本文提出了一个高性能的正交振荡器。该振荡器采用具有顶层厚金属的SMIC CMOS 0.18um工艺实现。采用cascode串联耦合来产生正交信号。对NMOS差分对管引入源级退化电容来抑制其1/f噪声转化为振荡器的近端相位噪声。并最终采用专用的低噪声,高电源抑制能力的LDO来供电。正交振荡器测试显示4.78GHz信号输出时1MHz频偏处相位噪声-123.3dBc/Hz.频率范围为4.09GHz到4.87GHz,17.5%的调谐范围。调谐增益在44.5MHz/V至66.7MHz/V之间。核心芯片面积不包含pad和ESD保护电路的为0.41mm2。  相似文献   

5.
采用0.35μm CMOS工艺设计并实现了一种新的应用于1.25Gb/s光纤通信接收机的高灵敏度、宽动态范围跨阻放大器电路。引入电流注入技术提高输入管跨导、优化噪声性能、提高灵敏度。自带直流反馈实现直流消除功能,同时采用自动增益控制机制,提高动态范围。仿真结果表明,该电路具有82.02dBΩ的跨阻增益、872.7MHz的带宽、23.74kHz的低频截止频率,输入等效噪声电流为4.08pA/Hz(1/2),最大输入光信号为+3dBm(2mA),在3.3V的电源电压下,芯片功耗为43.4mW。  相似文献   

6.
采用标准0.18μm RF CMOS工艺,设计了一种低相位噪声正交压控振荡器(QVCO)电路。该QVCO电路采用了两种新技术:分裂转换偏置与电容耦合技术。该电路不仅获得较好的相位噪声,还具有良好的相位误差。仿真结果表明,1.8V电压下,电路功耗为10.28mW。实现了848.1MHz~1.048GHz的调谐范围,输出频率为920MHz时,在频偏1MHz处,相位噪声为-127.5dBc/Hz,相位误差最小可达到0.01°。  相似文献   

7.
为了满足脑电信号(EEG)记录阵列的应用需求,设计了一种全差分的低噪声、低功耗放大器电路.该电路利用亚阈值区晶体管作为伪电阻,与输入电容和反馈电容形成高通通路,有效抑制了输入信号的直流失调电压,无需片外隔直电容,实现了电路的全集成.放大器中的跨导放大器(OTA)采用亚阈值晶体管进行设计,实现了较大的输出摆幅、良好的功耗和噪声性能.放大器电路采用SMIC 130 nm 1P8M混合信号工艺实现,芯片面积0.6 mm2.测试结果表明,在电源电压0.6V时,放大器可处理信号带宽为10 Hz~7 kHz,等效输入噪声的均方根值为3.976 μV,噪声有效因子为3.658,总功耗仅为2.4 μW.  相似文献   

8.
提出一种适合心电信号检测的低压、低功耗、低噪声、高共模抑制比的差分差值斩波前置放大器,包括偏置电路、主放大电路和时钟产生电路,其中,时钟产生电路包括张弛振荡器和两相非交叠时钟产生电路。该放大器采用斩波技术减小了低频1/f噪声,采用差分差值输入、交叉耦合结构增加了共模抑制比,采用T型电容反馈减小了芯片面积,优化了放大器性能。芯片采用SMIC 0.18 μm 1P6M CMOS工艺设计,使用PSS,PAC,PNOISE进行仿真分析。结果表明,放大器在1.8 V电源电压下,静态电流为35 μA,闭环增益为40.6 dB,共模抑制比为115 dB,输入等效噪声仅为950 nV(rms)(0.01~100 Hz),适用于心电信号检测领域。  相似文献   

9.
半球谐振陀螺是一种全固态振动陀螺,力反馈工作模式是其普遍采用的工作模式,而力反馈模式下其信号解调方法对白噪声的敏感度将决定其随机漂移指标。该文就力反馈模式下半球谐振陀螺的信号处理方法对白噪声的敏感度进行了研究,推导了4种信号处理方法(峰值采样解调、开关积分解调、全相位快速傅里叶变换(FFT)解调和相干解调)的计算公式,并采用monte-carlo方法仿真了在白噪声背景下的4种解调方法的性能。结果表明,全相位FFT解调法在不同信号强度下对白噪声均最不敏感,为半球谐振陀螺的信号处理与闭环控制设计提供了理论依据。  相似文献   

10.
分析了频率源中各个模块的噪声传递函数,确定影响近端噪声的模块分别是鉴频鉴相器-电荷泵(PFD-CP)、分频器;在默认分频器相位噪声为-158dBc/Hz,通过matlab建模推断,需要PFD-CP模块在10kHz频偏处的输入噪声达到-143dBc/Hz,才能实现频率源输出信号在10kHz频偏处相位噪声-107dBc/Hz。采用0.18μmSiGe BiCMOS工艺,设计了整块芯片,着重优化了PFD-CP模块的输入噪声,经过spectre仿真,PFD-CP模块的输入噪声为-146dBc/Hz,经过实测,输出信号在10kHz频偏处相位噪声为-108dBc/Hz,达到设计预期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号