首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以碘吸附值、亚甲基蓝吸附值及活性炭得率为考察指标,选取对糠醛渣活性炭性质影响较大的浸渍比、磷酸质量分数、活化温度、保温时间4个因素进行L16(45)正交试验对磷酸活化法制备糠醛渣活性炭的工艺条件进行优化。由正交试验结果得到磷酸活化的最佳工艺条件为:磷酸质量分数60%,浸渍比2.5:1,活化温度550 ℃,保温1.5 h,此条件下制得的活性炭样品的碘吸附值为839.6 mg/g,亚甲基蓝吸附值为260.3 mg/g,得率为46.8%,比表面积为830.20 m2/g,孔容积为0.502 cm3/g,孔径集中在0.8~2.5 nm,具有丰富的中孔和微孔。  相似文献   

2.
熊道陵  许光辉  张团结  陈金洲  陈超 《化工进展》2015,34(12):4280-4284
以油茶壳醇浸取后残渣为原料,以磷酸活化法制备活性炭,考察了浸渍比、磷酸质量分数和活化温度等对活性炭吸附性能及其得率的影响;活性炭的吸附性能由碘吸附值、亚甲基蓝吸附值表征。结果表明,在酸/炭浸渍比为3:1、磷酸质量分数70%、活化温度500℃时,活性炭的吸附性能最佳,其碘、亚甲基蓝吸附值和得率分别为1043.29mg/g、148.5mg/g和38.77%。采用物理吸附仪在77K下测定其N2吸附脱附等温线,利用BET法和BJH法计算比表面积和孔径分布,其比表面积为1626.45m2/g,平均孔径为4.7nm,总孔容为1.94cm3/g。同时采用FTIR和XRD分析了活性炭的表面官能团和微观结构。  相似文献   

3.
磷酸法水稻秆活性炭的制备   总被引:3,自引:1,他引:2  
以水稻秆为原料,采用磷酸活化法制备活性炭。研究了浸渍比、活化温度对活性炭样品吸附性能的影响,并对其微结构进行N2吸附等温线、热重-微商热重法(TG-DTG)、扫描电子显微镜(SEM)等表征。结果表明:水稻秆适合作为磷酸法活性炭的原料,吸附性能达到市售脱色活性炭的指标要求。在浸渍比为3∶1、活化温度 450 ℃、活化时间 60 min 的条件下,制得活性炭的亚甲基蓝吸附值 215 mg/g,碘吸附值 855 mg/g,A法焦糖脱色率 110 %,BET比表面积 967.72 m2/g,总孔容积 1.23 cm3/g,中孔率 84.6 %,平均孔径 4.6 nm。  相似文献   

4.
以玉米秸秆为原料, 研究烘焙预处理对磷酸法活性炭的制备及性能影响。研究结果表明: 烘焙预处理使玉米秸秆碳元素含量和固定碳含量增加而挥发分含量降低, 增加热解焦炭质量, 且烘焙温度影响强于烘焙时间。烘焙处理使玉米秸秆活性炭比表面积先增加后减小, 总孔容和中孔率减小, 而微孔率显著增加。烘焙预处理有助于提高活性炭吸附性能, 当100 g粒径为154~450 μm玉米秸秆颗粒经烘焙预处理, 预处理条件为烘焙温度240 ℃、烘焙时间60 min时, 预处理后的玉米秸秆含C 51.32%, 固定碳27.64%, 灰分4.72%。采用磷酸活化法将预处理后的玉米秸秆制备成活性炭, 制备条件为浸渍比1∶4(玉米秸秆与55%磷酸溶液的质量比), 浸渍温度140 ℃, 浸渍时间90 min, 活化温度400 ℃, 活化时间60 min, 此条件下制备的玉米秸秆活性炭比表面积达1 317.05 m2/g, 碘吸附值、亚甲基蓝吸附值和焦糖脱色率分别为876 mg/g、210 mg/g和100%。  相似文献   

5.
干法制备高中孔率生物质成型活性炭   总被引:2,自引:0,他引:2       下载免费PDF全文
以锯末为原料,氯化锌为活化剂,不添加黏结剂,采用干法混合后直接成型活化制备高中孔率生物质成型活性炭。为考察这种工艺的可行性,通过单因素实验,以亚甲基蓝吸附值为评价指标,考察了盐料比、活化温度、活化时间与成型密度对生物质成型活性炭吸附性能的影响,得出较优工艺条件为:盐料比1.0:1,活化温度950℃,活化时间为60min,成型密度为1.4g·cm-3。在此工艺条件下制备得到的生物质成型活性炭,其亚甲基蓝吸附值为387mg·g-1,BET比表面积为2104m2·g-1,平均孔径为3.11nm,总孔容为1.63cm3·g-1,中孔孔容为1.17cm3·g-1,中孔率高达71.8%,初步证明了干法制备高中孔率生物质成型活性炭工艺的可行性。  相似文献   

6.
《应用化工》2022,(1):265-268
以毛发作为原料,磷酸为活化剂制备活性炭。采用碘值吸附、亚甲基蓝吸附、比表面积、孔径分布、Bohem滴定法、傅里叶变换红外光谱(FTIR)、X-射线光电子能谱(XPS)等手段对所得产品结构特征和性能进行了表征。结果表明,以85%磷酸为活化剂,600℃高温活化1.0 h的条件下所制备出的活性炭得率为26.20%,碘吸附值为767.08 mg/g,亚甲基蓝吸附值为198.00 mg/g,比表面积为338.01 m2/g,总孔容为0.21 cm2/g,总孔容为0.21 cm3/g,平均孔径为2.45 nm。经Bohem滴定法结果表明毛发活性炭表面同时含有酸性官能团和碱性官能团,其总酸度为7.569 mmol/g,总碱度为1.320 mmol/g。说明以毛发为原料可以制备具有一定吸附能力的两性活性炭,这与传统以碳氧官能团为主的活性炭有一定的区别。  相似文献   

7.
以碘吸附值为评价指标,活化时间、活化温度和浸渍比为影响因素,采用响应面法试验设计对磷酸活化法制备咖啡渣活性炭的工艺条件进行优化,并通过静态吸附试验研究了不同吸附时间、溶液pH值和吸附温度条件下,活性炭对水溶液中Cr(Ⅵ)吸附性能的影响,最后利用Langmuir、Freundlich吸附等温方程、准一级动力学方程、准二级动力学方程和颗粒内部扩散方程进行拟合。试验结果表明,制备咖啡渣活性炭的最佳工艺条件为活化时间1 h、活化温度498℃、浸渍比1.72;在此条件下活性炭得率为30.4%,碘吸附值为(799±16)mg/g,比表面积为1 006 m2/g,孔容为0.779 cm3/g、微孔孔容为0.051 cm3/g、平均孔径为3.088 nm。较低pH值和较高温度能够促进活性炭对Cr(Ⅵ)的吸附;Langmuir等温方程能够更好地描述活性炭对Cr(Ⅵ)的吸附效果;活性炭对Cr(Ⅵ)的吸附分3个阶段:快速吸附阶段、慢速吸附阶段和吸附平衡阶段,10 min内可完成吸附总量的79%,360 min内达到吸附平衡,该吸附过程符合准二级吸附动力学方程。分析表明咖啡渣活性炭对Cr(Ⅵ)的吸附主要为单分子层的化学吸附。  相似文献   

8.
以速生材红麻秆芯为原料,磷酸为活化剂,采用传统磷酸活化法和机械力预处理磷酸活化法制备红麻秆基活性炭。考察了不同活化时间下2种制备方法对红麻秆基活性炭得率和吸附性能的影响,并借助比表面积分析仪、红外光谱仪表征了活性炭的孔结构及表面官能团特征。结果表明:相比于传统磷酸活化法,机械力作用能使磷酸渗入到原料里层,提高活化效率,使活性炭具有更高的得率、吸附性能、BET比表面积和孔容。在活化时间90 min下,机械力预处理磷酸活化法制得的活性炭得率为50.24%,碘吸附值为1 024 mg/g,亚甲基蓝吸附值为275 mg/g,BET比表面积为1 625.42 m2/g,总孔容为0.762 cm3/g。由孔径分析可知,2种方法制备的活性炭均以微孔为主,并含有一定数量的中孔。由红外光谱分析可知,机械力预处理不会破坏炭化物的基本结构,2种方法制备的活性炭表面均含有—OH、C—O和C=O等含氧官能团。  相似文献   

9.
研究了磷酸在不同加热温度下生成聚合磷酸的水溶性和酸溶性。结果表明:随着加热温度的升高,磷酸形成的聚合磷酸的溶解性下降,水溶解度和酸溶解度分别从98.71%和98.93%降低至73.12%和74.80%。以商品磷酸法木质活性炭为样品,以常规水洗除灰为对照,研究了酸洗、加热洗涤、添加氧化剂次氯酸、离心脱水方式等对活性炭灰分及其吸附性能的影响,并对洗涤后的活性炭样品进行比表面积及孔结构测定,确定了适宜的洗涤条件:洗涤温度为80℃,使用5% HCl并添加次氯酸洗2次,水洗3次,洗涤过程均用离心脱水方式。洗涤过后,活性炭样品的灰分从常规水洗除灰的6.24%降低至1.49%;此时活性炭的比表面积1 503 m2/g、孔径3.656 nm、孔容积1.361 cm3/g、碘吸附值975 mg/g、亚甲基蓝吸附值277.5 mg/g、焦糖脱色率110%,相比水洗除灰均有所增大。因此,活化过程在较低温度下进行并使用上述组合除灰工艺可制备出低灰分磷酸法木质活性炭。  相似文献   

10.
以氯化锌浸渍的木屑为原料,黏土为粘结剂,制备炭陶复合吸附材料。讨论了炭化温度和保温时间对其吸附性能的影响,并对其孔隙结构进行了表征。结果表明,随温度和保温时间的增加,炭陶复合吸附材料的碘吸附值和亚甲基蓝吸附值呈先上升后下降的趋势;木屑受到活化作用形成活性炭而发生收缩,在活性炭和陶土之间形成空隙,有利于形成孔隙结构发达的炭陶复合吸附材料。在温度500℃、保温时间1 h的较佳工艺条件下,制得炭陶复合吸附材料的比表面积为809.5 m2/g,总孔容积为0.298 cm3/g,中孔容积为0.185 cm3/g,微孔容积为0.113 cm3/g,炭陶的含炭量为60.7%,碘吸附值为680.5 mg/g,亚甲基蓝吸附值为165.0 mg/g。  相似文献   

11.
邓锋  解强  刘德钱  万超然  黄小晴  顾雪梅 《化工学报》2019,70(11):4457-4468
将泥炭破碎、粉磨、浸渍磷酸后,压块成型、再破碎,置于管式炉经不同活化温度、活化时间制得活性炭。对浸渍磷酸后的泥炭样品在氮气下进行热重分析;测定活性炭样品的碘吸附值、亚甲蓝吸附值和焦糖脱色率,利用气体吸附仪、激光拉曼光谱、傅里叶变换红外光谱和扫描电子显微镜分别表征其孔结构、碳结构、表面化学和微观形貌。结果表明:泥炭在磷酸活化过程中发生了交联反应,炭化/活化最大失重温度从300℃附近降低至200℃附近;随着磷酸浸渍比和活化温度的升高,活性炭中的无规则石墨层增多、羟基含量减少;磷酸浸渍比增加时,孔隙逐渐发达、吸附性能增强、2~5 nm孔段孔容增大;活化温度升高时,孔隙先收缩(400~550℃)后发生破坏(600℃)、吸附性能下降、2~5 nm孔段孔容减小;随着活化时间延长,活性炭的羟基含量先大幅减小(120~150 min)后无规律变化,孔隙先扩大(120~180 min)后收缩(>180 min),吸附性能>180 min后迅速下降,碳结构和2~5 nm孔段孔容无显著变化。在磷酸浸渍比1.5、活化温度500℃、活化时间180 min条件下,制得活性炭的比表面积为678.52m2·g-1,2~5 nm孔段的孔容达0.1475 cm3·g-1、占总孔容比率为31.04%、占中孔容比率为70.24%。  相似文献   

12.
以南疆地区盛产的巴旦杏核壳、核桃壳和白杏核壳为原料,采用微波辐照磷酸法分别制备了巴旦杏核壳活性炭(BAC)、核桃壳活性炭(HAC)和白杏核壳活性炭(XAC),干果核壳基质活性炭的制备工艺:10 g干果核壳以固液比1:3(g:mL)浸渍40%磷酸24 h,微波功率640 W,活化时间16 min。采用物理吸附仪、扫描电镜(SEM)、傅里叶红外光谱(FT-IR)、X射线衍射(XRD)等表征方法比较研究了不同种类干果核壳活性炭性能差异。结果表明:巴旦杏核壳、核桃壳和白杏核壳活性炭的热分解过程、残留基团基本一致,活性炭晶型均以非晶态为主。3类干果核壳活性炭表面分布着大量孔洞,且孔洞主要为0.4~1.2 nm的微孔和3~6 nm的中孔。其中,白杏核壳活性炭的性能最优,BET比表面积达981.5 m2/g,总孔容达0.570 cm3/g,亚甲基蓝吸附值达269.6 mg/g,碘吸附值达1 162.8 mg/g。  相似文献   

13.
为解决当前氨氮废水污染问题,以自制核桃壳炭为吸附剂,以NH+4为模型吸附分子,考察了核桃壳预处理方式、焙烧温度、焙烧时间和铵根离子初始浓度等对氨氮废水吸附的影响,并采用多种手段对核桃壳炭进行表征。研究结果表明:经H3PO4预处理后于700℃焙烧2 h制备的核桃壳炭对低浓度的NH+4具有优异的吸附能力;当铵根离子初始质量浓度为8 mg/L,100 mL NH+4溶液中加入核桃壳炭2 g,吸附时间为240 min时,NH+4去除率达93.41%;核桃壳炭吸附氨氮符合准二级动力学模型。比表面积和孔径分析结果表明:经H3PO4预处理后制备的核桃壳炭的比表面积为269.18 m^2/g,总孔容积为0.1736 cm^3/g,微孔容积为0.125 cm^3/g,平均孔径为5.46 nm。FT-IR、XRD和SEM分析表明:经H3PO4预处理制备的核桃壳炭为石墨碳晶相,表面呈现石墨片层结构,从而使其具有良好的NH+4的吸附性能。  相似文献   

14.
以油茶壳为原料,经炭化、KOH活化,制备微孔活性炭。考查了活化温度、活化时间和碱炭比对微孔活性炭碘吸附值和产率的影响,并采用正交试验优化了制备条件。研究结果表明:活化温度800℃、活化时间180 min、碱炭质量比3.5:1时,活性炭的碘吸附值达3 221 mg/g,产率51.2%。采用比表面积孔隙分析仪测定了氮气吸附/脱附等温线,计算得BET比表面积为1 755.72 m2/g,平均孔径为2.15 nm,总孔容为0.328 cm3/g,微孔孔容占总孔容的55.8%;SEM分析可见活性炭表面具有大量孔隙结构;FT-IR分析表明活化促进了—CH3、—OH热解,活性炭中仍保存含氧官能团。  相似文献   

15.
冯倩  徐荣声  李梅  张海永 《无机盐工业》2021,53(12):122-128
含有亚甲基蓝(MB)的废液直接排放会造成严重的水体污染。为研究生物质活性炭对MB的吸附性能,以农业废弃物向日葵为原料、磷酸(H3PO4)为活化剂,制备粉状活性炭(PAC)和块状活性炭(BAC),并研究PAC对MB的吸附性能。利用比表面积测试(BET)、X射线光电子能谱(XPS)、X射线衍射(XRD)、红外光谱(FT-IR)和扫描电镜(SEM)等方法解析活性炭的孔结构和表面特性。结果表明:活性炭前驱体的形状对活性炭的微观结构有较大的影响。PAC比BAC具有更大的比表面积(分别为701.95 m2/g和566.49 m2/g)和总孔体积(分别为2.23 cm3/g和1.04 cm3/g);PAC和BAC的平均孔径分别为7.31 nm和12.66 nm,均具有介孔材料的结构特性。两种活性炭表面均分布着丰富的含氧官能团和大量疏松的无定形碳,而存在的偏磷酸盐对孔隙起到支撑作用,这为MB的吸附提供了更多的活性位点和吸附通道。在25 ℃、pH为8、PAC用量为50 mg条件下,PAC对100 mL质量浓度为200 mg/L的MB溶液的吸附效果最好,吸附率达到72.2%。吸附过程符合伪二级动力学模型、颗粒内扩散模型和Langmuir等温吸附模型。  相似文献   

16.
Activated carbon with high specific surface area and considerable mesopores was prepared from bamboo scraps by phosphoric acid activation. The effect of activation conditions was studied. Under the conditions of impregnating bamboo with 80% H3PO4 at 80°C for 9 days and activation at 500°C for 4 h, the prepared activated carbon had the highest mesopore volume of 0.67 cm3/g, a specific surface area of 1567 m2/g, and the mesopore ratio reached 47.18%. The study on adsorption isotherms of CH4, CO2, N2 and O2 on the activated carbon were carried out at 298 K. The considerable difference in the adsorption capacity between CO2 and the other gases was observed, which would be of interest for the adsorptive separation/purification of gaseous CO2 from its mixtures, especially from mixtures with N2 and/or O2.  相似文献   

17.
采用磷酸活化法制备核桃壳颗粒活性炭,研究了在磷酸浸渍液中加入不同种类和含量添加剂对活性炭性能的影响。以亚甲基蓝和碘吸附值表征活性炭的吸附性能,并对活性炭的孔结构参数、机械强度和微晶结构进行了测试分析。结果表明:在磷酸中分别添加柠檬酸、柠檬酸钠、硼酸和糖精浸渍处理核桃壳原料,所得活性炭的亚甲基蓝吸附值都得到提高,而碘吸附值降低,说明添加剂促使活性炭中的微孔扩大为中孔。其中,添加0.5%的柠檬酸钠得到最佳的亚甲基蓝和碘吸附值,分别达到236.5和744.1 mg/g。此外,磷酸中添加1%硼酸后得到的活性炭结构中含坚固的炭微晶,起到了增强孔结构的作用,机械强度为85.8%;而添加1%糖精得到的活性炭中的炭微晶几乎全部发生了石墨化转变,生成质软的石墨,使强度下降,机械强度仅为80.1%;添加0.5%柠檬酸钠的活性炭由于发达的孔隙结构且没有炭微晶的加固而强度较低(82.5%)。  相似文献   

18.
以杏壳活性炭(AC)为原料,系统地研究了改性剂(硝酸银、硝酸铜、双氧水-硝酸铜)、改性条件(AC粒度、浸渍时间、焙烧时间、焙烧温度)对改性活性炭吸附乙烯性能的影响。采用ESEM-EDS、FT-IR、XPS等手段对改性活性炭的结构、表面化学成分等进行分析,并初步探讨了改性活性炭吸附乙烯的机理。研究结果表明用15%双氧水先氧化预处理后再用2%硝酸铜作改性剂时活性炭改性效果最好;活性炭改性时,活性炭粒度、焙烧时间和焙烧温度对改性活性炭乙烯吸附性能的影响较大,而浸渍时间的影响较小。在15%双氧水氧化预处理、改性剂为2%硝酸铜、活性炭粒径0.38~0.83 mm、浸渍时间6 h、焙烧温度400℃、焙烧时间4 h条件下制得改性活性炭(H2O2-Cu-AC)对乙烯的吸附量为0.163 g/g,比AC(0.069 g/g)提高了136.23%;H2O2-Cu-AC中活性组分铜能相对均匀地分散在活性炭的表面和孔隙内部,改性剂引起了活性炭孔隙结构和表面官能团的变化,比表面积由AC的1 047.50 m2/g下降到1 012.65 m2/g,总孔容积由AC的0.467 1 cm3/g下降到0.434 7 cm3/g,孔径向较宽方向分布,其中< 10 nm的孔径分布占比由58.16%下降到53.95%,10~20 nm的孔径分布占比由18.01%上升到19.10%,>20 nm的孔径分布占比由23.83%上升到26.94%。其含氧官能团增加,C1、C3、C5降低,其中,C1峰面积占比由77.468%降低到76.827%,C3峰面积占比由6.684%降低到5.675%,C5峰面积占比由0.844%降低到0.749%;C2、C4增加,其中C2峰面积占比由13.514%增加到15.225%,C4峰面积占比由1.490%增加到1.524%。  相似文献   

19.
王燕霞  胡修德  郝健  郭庆杰 《化工学报》2020,71(5):2333-2343
以商业煤基活性炭为原料,经低浓度氧气焙烧、H2O2氧化改性,并以四乙烯五胺(TEPA)浸渍,得到胺负载复合氧化活性炭,用于模拟烟道气[(15%(体积)CO2+85%(体积)N2)+10%(体积)H2O]中CO2吸附。低浓度氧气焙烧后,活性炭的最大比表面积和孔体积分别为1421.82 m2/g、0.83 cm3/g。经复合氧化改性后,活性炭的介孔体积增大,表面含氧官能团增加,使得TEPA负载复合氧化活性炭的CO2吸附性能提高。焙烧时间为4 h,H2O2氧化、负载40%TEPA的样品COAC-4-40TEPA,在60℃时CO2饱和吸附量最高为2.45 mmol/g,是TEPA负载未改性活性炭AC-40TEPA的2.02倍。经过十次吸附循环后,COAC-4-40TEPA的 CO2饱和吸附量可维持在92.24%,而TEPA的浸出量仅有0.67%。失活模型研究表明,COAC-4-40TEPA的初始吸附速率常数是AC-40TEPA的1.64倍,且失活速率常数低于AC-40TEPA。  相似文献   

20.
以废弃榛壳为前体,采用不同活化策略制备多孔炭,探究活化策略和活化温度对多孔炭挥发性有机化合物(VOCs)吸附性能的影响,以及多孔炭的结构、表面性质与VOCs吸附性能的构效关系。结果表明,H3PO4法制备的多孔炭介孔体积大,且炭结构缺陷较少,吸附位点较少; KOH法获得的微孔体积较大,孔径集中在0.5~0.7nm的微孔,不利于VOCs分子吸附位点的有效利用。H3PO4-KOH分步法在850℃下制备具有高比表面积,孔径集中在0.5~1nm的宽微介孔分布,且炭结构高度无序并含有丰富缺陷位的多孔炭,为VOCs吸附提供了充足的吸附位点并提高了吸附位点了利用率,相比于H3PO4与KOH活化法制备的多孔炭的VOCs饱和吸附量显著提升,特别是对于弱极性VOCs。另外,H3PO4-KOH分步法制备的多孔炭表面官能团含量较低,极性较低,对非极性VOCs的吸附量远大于极性VOCs。因此,H3PO4-KOH分步活化策略是制备具有高比表面积、高VOCs吸附性能多孔炭的最优策略与方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号