首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对用于磁悬浮车辆的非磁性次级直线感应电机的力特性和涡流损耗进行研究。该电机初级绕组通入三相对称交流电产生行波磁场,与地面非磁性次级导体中感应的涡流磁场相互作用,可同时产生悬浮力和驱动力。针对非磁性次级直线感应电机力特性及涡流损耗求解问题,以麦克斯韦电磁方程为基础,建立了非磁性次级直线感电机的简化二维电磁模型,对其磁场进行解析分析,得到该类电机的推进力、悬浮力、总机械功率、涡流损耗的解析表达式;研究了涡流损耗与输入电流幅值、频率、转差率之间的关系;找出了合适的工作区间。利用有限元计算软件,计算分析了推进力、悬浮力及涡流损耗特性曲线。实验结果验证了理论计算的正确性。  相似文献   

2.
孙玉坤    陈家钰  袁野   《微电机》2021,(8):19-22+79
飞轮储能由于效率高、无污染等优点得到了广泛应用。作为核心部件,高速永磁同步电机的损耗直接制约着电机转速,进而影响飞轮储能系统的性能。文章给出电机铁耗和永磁体涡流损耗的计算公式,分析两种损耗的影响因素。根据损耗分析给出电机的拓扑结构,介绍电机的绕组形式、极槽配比和转子结构。提出一种新型磁障设置方法,在定子轭部设置空气磁障,引入径向分段和Halbach充磁方式,给出三种新型电机拓扑。有限元仿真结果表明,磁障的设置显著降低了铁耗,但也使得永磁体涡流损耗上升。径向分段和Halbach均能大幅度降低永磁体涡流损耗,将径向分段与磁障相结合是降低损耗的有效方法。减少槽口宽度能降低永磁体涡流损耗,但其取值要综合考虑损耗与加工难度。  相似文献   

3.
无槽电机绕组的有效部分直接切割气隙磁场,在其中引起涡流损耗。为不使其损耗过大,导体截面的确定必须合理。文中导出了计算这一损耗的计算公式,为选择绕组导线提供依据。  相似文献   

4.
随着永磁电机朝着高效化和轻质化方向发展,其功率密度和转速越来越高,使得绕组交流铜耗增加,从而导致电机局部过热、效率降低。该文以永磁电机为研究对象,着重研究绕组涡流损耗的产生机理及计算方法,提出基于快速有限元的绕组涡流损耗半解析算法。首先,介绍借助快速有限元提取槽漏磁的方法,并构建导体排布模型;其次,推导了导体涡流损耗的低频和高频解析计算方法,并通过搭建基于Matlab和开源有限元软件FEMM的仿真平台将提出的半解析方法予以实现,并与传统商用有限元软件仿真结果进行对比;最后,通过实验进一步验证了其准确性。结果表明,该方法的计算速度提高了近100倍,在较大频率范围内误差小于5%。  相似文献   

5.
变压器绕组漏磁场引起的涡流损耗占附加损耗的比重较大,会使变压器产生局部过热,寿命缩短,关系到变压器设计、制造,并影响变压器运行性能。因此准确计算绕组涡流损耗对变压器的优化设计有重要意义,而工程上针对变压器绕组涡流损耗,应用传统经验公式计算,误差较大,且不能准确计算绕组的横向涡流损耗。基于ANSYS有限元法建立了变压器的二维有限元模型,基于电磁场理论分析了变压器的漏磁分布,得到了各次谐波电流背景下绕组的涡流损耗分布及损耗值。从涡流损耗理论计算与有限元仿真计算结果对比表明,有限元法损耗计算更相近实际,更加准确,为变压器温度场热源的计算以及变压器的优化设计提供了可能。  相似文献   

6.
考虑邻近效应的高速永磁无刷电机交流损耗   总被引:1,自引:0,他引:1  
为了准确计算高速永磁无刷电机绕组交流损耗,考虑导体的趋肤效应和邻近效应,分析了槽内导体的涡流损耗的影响因素,并采用2D有限元研究SPWM调制引起的电流谐波、槽口几何尺寸、导体直径和位置以及并绕根数对绕组交流损耗的影响.计算结果表明,通过合理选择槽口尺寸、导体直径、并绕根数以及载波比可以有效降低绕组的交流损耗.针对永磁无刷电机绕组交流损耗难以从定子铁心损耗、转子涡流损耗以及机械损耗中准确分离的特点,采用在电机三相绕组中串入测试线圈的实验方法,验证了绕组交流损耗和SPWM载波比、导体半径以及并绕根数的关系,实验和有限元计算结果误差在5%以内.  相似文献   

7.
新型外转子Halbach永磁阵列定子无铁心电机设计与分析   总被引:1,自引:0,他引:1  
具有气隙磁密正弦、磁密高等优点的halbach阵列永磁外转子电机应用于飞轮储能系统的电动/发电机可以有效提升系统集成度,简化系统结构,提高系统功率密度。本文研究分析新型外转子halbach永磁阵列定子无铁心电机的转子结构和定子绕组设计方法;通过有限元方法分析了磁场分布和定子绕组损耗;研究定子绕组区域磁场分布变化特征,采用每匝绕组线圈内部导体换位技术有效抑制线圈导体内部之间的环流;最后,通过场路耦合方法分析定子绕组电流对转子永磁体涡流损耗影响。本文优化设计的200k W外转子halbach永磁阵列定子无铁心电机的机电能量转化效率高达99%以上。  相似文献   

8.
基于目前的卫星姿态控制反作用飞轮空间利用率低的现状,提出了一种基于PCB绕组和轴向磁通的超薄反作用飞轮,可以较大地提升飞轮空间利用率。根据PCB绕组的特点对PCB绕组的损耗进行了数值分析和有限元分析。首先采用数值分析的方法分析了PCB绕组涡流损耗和环流损耗的机理,然后又通过三维有限元方法,对不同的PCB绕组导体的并联情况和PCB绕组端部短路情况展开损耗研究。通过有限元仿真可以发现:PCB绕组在电流较大的情况下,建议采取多导体并联,其中在采取与PCB平面垂直的方向上并联,抑制损耗效果最为明显,但多层的PCB成本相对较高。在PCB同一层并联的情况下,多个并联导体忌在绕组端部采取短路,一旦采用单端短路结构,应该使被端部短路的多条支路在空间上差180°电角度。该研究对设计基于PCB绕组结构的永磁电机具有一定的指导意义。  相似文献   

9.
绕组损耗是磁性元件设计的关键,传统计算绕组高频涡流损耗的理论方法有Dowell模型和Bessel函数。随着功率变换器工作频率的提高以及多股绞线的应用,这些方法将带来很大的误差。通过深入分析涡流的集肤和邻近效应在圆导体上所产生的电流密度分布特性,提出一种改进的绕组高频损耗模型,能够更精确地计算高频下圆导体绕组的损耗。通过有限元仿真和样品测试验证了所提出模型的精度。  相似文献   

10.
基于涡流损耗分析的永磁型无轴承电机优化   总被引:1,自引:0,他引:1  
针对永磁型无轴承电机在高速运行时,转子涡流损耗导致永磁体发热严重,导致永磁体存在不可逆退磁的难题。在分析永磁型无轴承电机转矩和径向力产生机理的基础上,研究了径向力、转矩绕组磁场和悬浮绕组磁场的相对运动关系,给出了永磁型无轴承电机单一方向稳定可控径向力的产生条件,采用2D耦合电路瞬态有限元法,计算了转子空载涡流损耗,比较了永磁型无轴承电机极对数为PB=PM+1和PB=PM-1时的转子涡流损耗。研究结果表明,永磁型无轴承电机转子涡流损耗主要是由悬浮绕组磁场产生,采用PB=PM+1结构时,转子涡流损耗最小,PM=1,PB=2结构最适合高速运行。  相似文献   

11.
为解决轴向磁场永磁同步电机温度过高导致电机运行性能降低的问题,针对电机转子进行了深入研究。先利用Maxwell三维电磁场有限元分析软件建立电机有限元模型,仿真电机磁场分布和气隙磁密波形,并计算平均涡流损耗;采用铜层屏蔽减小转子涡流损耗,并仿真出转子涡流损耗随铜层厚度变化情况。  相似文献   

12.
随着变压器工作频率的提高,趋肤效应和邻近效应引起的绕组涡流损耗也随之提高.将空心管型绕组应用于中频变压器,不但可以提高绕组材料利用率,同时能改善变压器的散热效率.通常计算绕组损耗的模型有Dowell模型和Bessel函数模型,但由于空心管型绕组形状特殊,无法用上述模型计算.为了解决这一问题,提出了一种基于无穷级数的空心管型绕组涡流损耗计算方法,通过镜像法移除变压器磁心对窗口磁场分布的影响,得到空心管型绕组变压器绕组涡流损耗的计算方法.理论分析计算和有限元模型的仿真比较,验证了理论分析的可行性.  相似文献   

13.
叶俭  刘文里  吴明君  宫丽娜 《黑龙江电力》2013,35(2):143-146,151
干式变压器中箔式绕组的涡流损耗占附加损耗的比重非常大,容易产生局部过热,损坏变压器。为了准确分析涡流损耗分布特点,利用ANSYS有限元分析方法,建立了干式变压器的有限元模型,分析了变压器的漏磁分布,得到了绕组的涡流分布及损耗值。算例计算与仿真分析的结果对比表明,采用有限元计算方法计算的结果与工程计算的结果相吻合,说明该计算方法可以满足工程实际需要。  相似文献   

14.
轴向磁通无铁心永磁电机的定子为无铁心结构,采用扁线绕制的定子绕组盘,具有槽满率高、平整度好、加工简单等特点。但是相对于圆形导线,矩形扁线具有截面积较大、涡流损耗大的缺点,导致电机损耗偏高、效率偏低。该文根据轴向无铁心电机磁场的三维分布特性,针对矩形扁线涡流损耗分布不均匀的特点,推导了定子无铁心扁线绕组特有的涡流损耗快速计算方法。在此基础上,基于涡流损耗的产生机理并以绕组铜耗最小为优化目标,建立了扁线绕组最优参数的求解公式。采用三维有限元软件仿真及样机测试的方法,验证了涡流损耗解析计算方法的有效性和准确性。结果表明,该文提出的涡流损耗计算公式以及导线参数优化方法可以实现扁线绕组的低损耗及电机的高效率,所得结论可为轴向无铁心电机定子绕组的设计及优化提供理论依据。  相似文献   

15.
《微电机》2016,(11)
高速永磁同步电机以其体积小、效率高、功率密度大等优点,广泛应用于飞轮储能系统。电机温升直接影响到电机的性能与可靠性,而在高速电机中,由于定子电流时间谐波和气隙磁场中的高次空间谐波产生的永磁体涡流损耗变得不可忽略,其损耗积累导致的温升会对永磁体性能产生较大影响。考虑到本电机转子内嵌式永磁体结构,无需采用护套,及永磁体表面镀层工艺对镀层厚度的限制,本文采用了永磁体表面覆铜板的方式加入高电导率蔽层以减小永磁体损耗,优化了电机温升,使转子稳态温度降低了30.6%。本文以一台4极,150k W,9000r/min的永磁电机为例,建立二维有限元模型,通过有限元计算分析了电机空载状态下的损耗与温升,并通过实验验证了模型与仿真结果的正确性。  相似文献   

16.
针对引发空心电力电抗器故障的局部过热问题,在二维和三维磁场有限元分析的基础上,计算空心电抗器的全部损耗——绕组内损耗和接线臂构架内的涡流损耗。其中绕组内损耗包括绕组电阻性损耗和绕组内的涡流损耗。以计算得到的全部损耗作为热源,结合空心电抗器的散热条件,建立空心电抗器内部温度场及周围流体场耦合有限元模型,对空心电抗器进行了二维和三维流场-温度场耦合计算,得到了电抗器各包封的温度分布,研究结果表明接线臂构架和撑条影响了电抗器的温升以及最热点位置,考虑全部损耗和散热条件的三维流-热耦合分析是十分必要的。  相似文献   

17.
高功率密度感应牵引电机具有结构紧凑、磁通饱和度高、工作频率高、单位体积损耗密度大等特点。高工作频率导致定子绕组趋肤效应和邻近效应明显增加,在定子绕组中感应高频涡流附加损耗,引起附加铜耗大大增加。基于感应电机内部谐波磁场理论分析定子绕组涡流附加损耗的来源、计算方法及影响因素,并对一款4极650 kW感应牵引电机进行了详细有限元分析。分析了感应牵引电机定子槽内磁场分布、槽内磁场的各次谐波、谐波幅值与距槽口深度的关系,并计算了槽内导体的涡流附加损耗。计算结果表明槽口附近导体的涡流附加损耗最大,随着距离槽口深度的增加,槽内导体的涡流附加损耗呈明显减小的趋势,通过合理设计定子槽口深度可以有效减小槽口附近导体的涡流附加损耗。  相似文献   

18.
径向驱动式啮合电机建模与仿真研究   总被引:2,自引:0,他引:2  
针对一种改进的径向驱动式啮合电机结构,采用有限元方法分析了磁场特性,依据有限元计算结果建立电机的非线性分析模型,将模型与控制协同对径向驱动式啮合电机的动态特性进行仿真分析.研制与仿真模型结构参数完全相同的物理样机,采用不同的控制方式和负载转矩对样机进行加载实验.结果显示:实测负载转矩与仿真分析得到的负载转矩较为接近,从而验证了有限元仿真模型的准确性和有效性;在开环控制时,细分磁极换相控制节拍,并且调整绕组电压能够有效增大输出转矩和减小脉动.  相似文献   

19.
永磁伺服电机采用不同的绕组分布形式对电机的电磁场和温度场均会产生一定的影响,文章以一台8极10 k W的永磁伺服电机为例,建立不同绕组分布的永磁伺服电机模型,对比分析电机不同绕组分布对电磁场和温度场的影响。首先,采用时步有限元计算方法对永磁伺服电机谐波磁场变化进行分析,基于傅里叶谐波分解理论给出电机内各次谐波的变化情况。然后,结合电机转矩脉动系数的分析对不同绕组分布下的永磁电机转矩脉动进行研究,给出电机转矩波动随绕组分布形式的变化规律;其次对电机各损耗的变化规律进行分析,并揭示电机内谐波磁场对电机损耗的影响机理。在损耗研究的基础之上,进一步对不同绕组分布下的永磁伺服电机绕组温度与永磁体温度进行分析,给出不同绕组分布下的温度变化规律。最后,结合有限元计算结果及相关实验验证计算分析的准确性,并进一步揭示双层绕组分布在永磁伺服电机提高电机综合性能方面的作用。  相似文献   

20.
转子涡流损耗主要由绕组电枢磁场的空间谐波和时间谐波以及槽开口引起的气隙磁阻变化产生.表贴式永磁无刷直流电动机由于其永磁体和保护套材料具有较好的导电性能,因此会在转子内产生一定的涡流损耗,引起转子发热.采用时步有限元方法,针对一台额定功率30 kW、4极3相,额定转速8000 r/min的表贴式永磁无刷直流电动机,分别计算了空载和负载时转子永磁体及保护套内的涡流损耗.同时也对比分析了将保护套材料由不锈钢改为碳纤维后,转子内涡流损耗的变化情况,研究了保护套材料属性对损耗及温度场的影响.通过与样机温升实验的数据对比,说明该涡流损耗计算模型有一定的精度和准确度,对电机的优化设计具有指导意义,有较好的工程应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号