首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
在综合考虑机床动静态多种误差源的基础上,建立了各运动轴伺服运动模型和多体联动模型,给出了刀具的实际运动位置和姿态,基于包络理论求解了曲面加工实际成形面,对比理想数学模型,对加工误差进行了综合预测和评判。以复杂非可展曲面--S试件为例,给出了S试件的铣削精度构建方法,分析了机床动态因素(位置环、速度环等)对零件铣削精度的影响,并通过切削实验后的数据回归分析予以验证。建立了基于神经网络的机床铣削误差辨识模型,用于评估机床加工后的状态。该平台的搭建为实现大型、关键零件的加工精度预测和保障提供了技术支撑。   相似文献   

2.
基于多体理论与齐次坐标变换,对五轴数控机床进行误差分析和加工精度建模。以XKAS2525型五轴双墙龙门数控机床为研究对象,根据机床结构和关键零部件的装配关系,分析机床各项几何误差,建立各个关键零部件的子坐标系和体间特征矩阵,系统完整地建立机床的加工精度模型,为后续的精度设计工作奠定基础。  相似文献   

3.
基于敏感度分析的机床关键性几何误差源识别方法   总被引:10,自引:1,他引:10  
零部件几何误差耦合而成的机床空间误差是影响其加工精度的主要原因,如何确定各零部件几何误差对加工精度的影响程度从而经济合理地分配机床零部件的几何精度是目前机床设计所面临的一个难题。基于多体系统理论,在敏感度分析的基础上提出一种识别关键性几何误差源参数的新方法。以一台四轴精密卧式加工中心为例,基于多体系统理论构建加工中心的精度模型,并利用矩阵微分法建立四轴数控机床误差敏感度分析的数学模型,通过计算与分析误差敏感度系数,最终识别出影响机床加工精度的关键性几何误差。计算和试验分析表明,该方法可以有效地识别出对机床综合空间误差影响较大的主要零部件几何误差因素,从而为合理经济地提高机床的精度提供重要的理论依据。  相似文献   

4.
针对多轴联动数控机床加工精度误差补偿问题,从分析数控机床误差产生机理和建立精度误差补偿模型的角度,提出了基于多体系统理论的数控机床加工精度几何误差预测模型。分析了B-A摆头五轴龙门数控机床的拓扑结构关系、低序体阵列、各典型体坐标变换,推导出了B-A摆头五轴龙门数控机床精度几何误差预测函数。采用平动轴十二线法误差参数辨识算法,测量并计算了某B-A摆头五轴数控机床21项空间几何误差,为精度几何误差预测函数提供有效参量。该几何误差参数建模方法,对不同拓扑结构和运动关系的数控机床具有通用性,为后续数控机床误差动态实时补偿并提高切削加工精度提供了理论依据。  相似文献   

5.
基于多体系统基本理论推导出相邻体理想坐标变换以及误差变换矩阵并通过拓扑方法拓展到任一体理想坐标及误差变化公式。进而应用到五轴机床对应的零部件进行机床几何误差建模。最后推导出刀具形成点与工件被加工点的空间位置误差模型。并结合实验探究五轴数控机床37项误差参数对实际运动中的刀具形成点的位置误差影响,为之后的误差补偿和机床精度预测奠定理论基础。  相似文献   

6.
影响加工形位误差的因素众多,机床几何误差是其中最关键的因素。其影响零件的功能要求、配合性质和自由装配性,是评估机床加工精度的重要指标。本文通过构建机床几何误差和零件形位误差之间的映射关系对加工形位误差预测方法进行研究,建立了基于机床几何误差模型的三轴机床刀具位姿误差模型,并以刀具位姿误差为中间量建立了平面度误差和圆柱度误差预测模型。使用TH6920型镗铣床进行试验验证,与零件形位误差检测值对比,圆柱度预测误差为9.3%,平面度预测误差为4.8%,预测效果较好,验证了预测方法的有效性。  相似文献   

7.
五轴联动加工中心是数控机床的高端产品。运动精度是评价机构质量的重要考核指标。以往机床机构运动精度分析中,往往不考虑输入误差的随机性,造成评价结果不准确。应用齐次坐标变换,推导了一种2R3T型五轴机床的运动学方程。基于多体系统理论,建立了机床的误差模型。考虑输入误差的随机性,推导了机构运动精度可靠性计算模型。机床机构运动可靠性分析为提高机床加工精度和使用寿命提供了一定的理论参考意义。  相似文献   

8.
为充分发挥多轴数控机床大数据的价值,降低运动精度的预测难度,提出了基于元动作模块的精度分析方法。采用多体模型描述机床运动系统的结构和运动关系,利用旋量理论和微分方法推导了用于运动精度评价的坐标误差模型;规划了多轴数控机床大数据驱动的精度分析的结构框架,并重点论述了以元动作模块为基本组成单元的分布式元动作数据库的构建方法,该方法充分发挥历史大数据和实时动态数据的价值,保证了机床运动系统的仿真和精度预测的稳定性与准确性。通过对五轴联动加工中心的刀具运动系统的实例分析,验证了精度分析方法的简便性和适用性。  相似文献   

9.
机械加过工艺系统复杂、环节多、影响因素多,对零件加工精度影响较大。为确保零件加工精度符合质量要求,必须对加工工艺环节中影响零件加工精度的因素进行控制。本文简单介绍了机械加工工艺,分析了机械加工工艺中影响零件加工精度的因素,探讨了基于机械加工工艺提高零件加工精度的措施。旨在为机械加工工艺中零件加工精度的控制提供一些参考。  相似文献   

10.
为提高光学自由曲面的加工精度,本文基于多体系统理论建立了五轴数控研抛机床综合误差模型。采用直接测量方式对各轴的移动误差和转角误差进行重复测量与分析,发现不同进给速度和测量间距对移动误差和转角误差没有显著影响。把误差数据代入综合误差模型中,得出研抛机床综合误差在x轴、y轴和z轴轴向上的移动误差和转角误差分量的变化规律,进而获知线性位移误差是影响综合误差最主要的因素。依据综合误差模型进行补偿实验,补偿后x轴、y轴和z轴的线性位移误差分别下降88%、89%和84%,补偿效果显著。实验结果证明本文所提出的综合误差建模及补偿方法具有较高的精度和较好的鲁棒性。  相似文献   

11.
为修正五轴数控机床加工误差,提高五轴数控机床加工质量,提出一种新的五轴数控机床加工误差动态修正方法.构建五轴数控机床加工误差计算模型,获取五轴数控机床加工的刀心方位、刀轴方位轮廓误差;锁定误差方位后,通过五轴数控机床误差的动态实时补偿方法,实现五轴数控机床加工误差动态修正.研究结果表明:所提方法可实现全方位、高效率的五...  相似文献   

12.
In the machining of sculptured surfaces, five-axis CNC machine tools provide more flexibility to realize the cutter position as its axis orientation spatially changes. Conventional five-axis machining uses straight line segments to connect consecutive machining data points, and uses linear interpolation to generate command signals for positions between end points. Due to five-axis simultaneous and coupled rotary and linear movements, the actual machining motion trajectory is a non-linear path. The non-linear curve segments deviate from the linearly interpolated straight line segments, resulting in a non-linearity machining error in each machining step. These non-linearity errors, in addition to the linearity error, commonly create obstacles to the assurance of high machining precision. In this paper, a novel methodology for solving the non-linearity errors problem in five-axis CNC machining is presented. The proposed method is based on the machine type-specific kinematics and the machining motion trajectory. Non-linearity errors are reduced by modifying the cutter orientations without inserting additional machining data points. An off-line processing of a set of tool path data for machining a sculptured surface illustrates that the proposed method increases machining precision.  相似文献   

13.
五轴数控机床的几何误差和热误差是影响工件加工精度的两个重要因素,对这些误差因素进行分析可以有效提高薄壁件工件的加工精度。本文首先基于齐次坐标变换法,建立了双转台五轴数控机床的旋转轴几何误差模型;然后基于对标准球进行在机接触测量,辩识得出两旋转轴的12项几何误差,这些误差考虑了两旋转轴之间的相互影响和其热误差的影响;最后分析五轴数控机床加工空间的几何误差场,在该加工空间内几何误差从中心到外侧逐渐增加,当A轴旋转角度增加时,误差的最大值也随之增加。与其它位置误差辨识方法相比,本方法的测量精度符合加工要求,测量时间只需要30 min。  相似文献   

14.
摆动主轴作为五轴加工领域的关键零部件,其摆动精度在很大程度上决定了数控机床的加工精度。文中阐述了TS640测头的工作原理及在建立摆动误差模型时的应用,对摆动误差进行测量,并建立了误差补偿的数学模型。为数控机床的误差补偿提供理论依据,提高了五轴数控加工中心的加工精度。  相似文献   

15.
One of the important trends in precision machining is the development of real-time error compensation technique. The error compensation for multi-axis CNC machine tools is very difficult and attractive. The modeling for the geometric error of five-axis CNC machine tools based on multi-body systems is proposed. And the key technique of the compensation-identifying geometric error parameters-is developed. The simulation of cutting workpiece to verify the modeling based on the multi-body systems is also considered.  相似文献   

16.
在五轴加工编程中,计算机辅助制造系统对曲面加工通常采用以折代曲,采用大量的微小G01直线段来加工曲面,在曲率半径较大的工件表面会出现明显折痕,严重影响工件表面的加工质量。为提高五轴数控加工工件的表面质量,提出一种五轴微段平滑插补算法。该算法考虑五轴加工中刀位数据的量纲差异,根据相邻数据点间的线性轴长度、线性轴的夹角和旋转轴角度变化量识别五轴数控加工程序中非连续微段和连续微段加工区域。对非连续微段加工区域按照原始直线段和旋转轴直接插补,从而保证加工精度。对连续微段加工区域,先通过五维变量获取节点参数,采用最小二乘法对指令点在允许的精度范围内进行修正;对修正后的指令点采用4点构造法计算二阶切矢,根据连续微段的指令点修正值,节点参数值和对应的二阶切矢值获取二阶连续的三次样条曲线;在二阶连续平滑的曲线上进行实时插补计算,控制机床进行五轴加工。试验结果表明:通过提出的五轴微段平滑压缩算法拟合后的路径要更加接近原始的曲面模型,平滑处理过的实际工件加工表面也要优于未进行处理的工件加工表面,提高了五轴自由曲面的表面质量。  相似文献   

17.
五轴数控机床是实现工件复杂表面精密加工的重要设备,而机床本身精度是保证加工精度的重要前提。以一台大型五轴数控加工机床为研究对象,分析各项误差,应用多体系统运动学理论,建立移动轴与旋转轴的几何误差数学模型,推导出刀具相对工件坐标系的位置与姿态误差表达式,为误差补偿提供精确数学模型,提高机床加工精度。  相似文献   

18.
Rotary tables are widely used with multi-axis machine tools as a means for providing rotational motions for the cutting tools on the three-axis machine tools used for five-axis machining operations. In this paper, we present a comprehensive procedure for the calibration of the rotary table including: geometric error model; error compensation method for the CNC controller; error measurement method; and verification of the error model and compensation algorithm with experimental apparatus. The methods developed were verified by various experiments, showing the validity and effectiveness of the presented methods, indicating they can be used for multi-axis machine tools as a means of calibration and precision enhancement of the rotary table.  相似文献   

19.
The theory and algorithm of the homogeneous transformation matrix (HTM) method are applied in establishing the kinematic error model of five-axis machining tool with two-axis turntable. Based on this model, a new method for the kinematic error separation in five-axis numerical control (NC) machining tool is proposed. In this study, three types of simultaneous three-axis control motions are designed for each rotary axis to identify the deviations. In the measurement, two translational axes and one rotary axis are simultaneously controlled to keep a constant distance between the tool and the worktable. Telescoping double ball bar is used to measure the relative distance between the spindle and the worktable in the motion of NC machining tool. Finally, the value measured by telescoping double ball bar is substituted into the model to obtain kinematic error of NC machining tool. Comparison has confirmed that the proposed method is high precision and can be applied to effectively and conveniently measure the five-axis machining tool.  相似文献   

20.
Five-axis contour following is one of the main tasks for five-axis CNC machine tools. The contour following accuracy directly determines the final machining precision. Therefore, control of the five-axis contour error is significant. Currently, most existing definitions of five-axis contour error are in the Cartesian task space, and this inevitably requires direct and inverse Jacobian transformations between the task-space contour-error computation and the joint-space contour-error control. Different from them, this paper defines the five-axis contour error in the ℝ5 joint space through adjusting uniform units of five joints, and accordingly proposes a third-order estimation algorithm for the defined joint-space contour error, with the help of the concept of generalized curve. Based on the joint-space contour-error definition and estimation, a joint-space five-axis cross-coupling control scheme is finally provided. Simulation and experimental results demonstrate that the presented third-order joint-space contour-error estimation algorithm has a satisfactory estimation accuracy, and the presented joint-space five-axis contour control method can decrease both of the joint-space and the task-space five-axis contour errors by more than 49%. It is also analyzed and verified that comparing with routine task-space five-axis contour control method, the presented joint-space method not only needs not the direct and inverse Jacobian transformations during error estimation, which saves the computational burden, but also generates minimum axial contour-control commands, which enhances the control stability, thus resulting in better contour-following performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号