首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究带摆角头五轴数控机床几何误差建模方法及误差补偿技术.基于多体系统运动学理论,阐述带摆角头五轴数控机床的拓扑结构及其低序体阵列,建了五轴差模型.根据该误差模型研究了带摆角头五轴数控机床的几何误差软件补偿计算方法,分别建立理想条件与实际条件下刀具路线、数控指令及刀具轨迹三者间的相互映射关系,给出数控指令修正值的具体算法及迭代计算求解终止判别条件,通过该方法可获得修正后的数控指令,从而解决软件误差补偿的关键问题该补偿方法直接、简明,具有很好的通用性.  相似文献   

2.
基于多体理论与齐次坐标变换,对五轴数控机床进行误差分析和加工精度建模。以XKAS2525型五轴双墙龙门数控机床为研究对象,根据机床结构和关键零部件的装配关系,分析机床各项几何误差,建立各个关键零部件的子坐标系和体间特征矩阵,系统完整地建立机床的加工精度模型,为后续的精度设计工作奠定基础。  相似文献   

3.
基于多体理论与齐次坐标变换,对五轴数控机床进行误差分析和加工精度建模。以XKAS2525型五轴双墙龙门数控机床为研究对象,根据机床结构和关键零部件的装配关系,分析机床各项几何误差,建立各个关键零部件的子坐标系和体间特征矩阵,系统完整地建立机床的加工精度模型,为后续的精度设计工作奠定基础。  相似文献   

4.
在当前的机械制造行业中,对机械零部件的尺寸精度、几何形状复杂程度等有了更高的要求,建立五轴数控机床的加工精度模型更为重要。基于此,结合五轴数控机床的使用,提出了其中的关键零部件及拓扑结构,并提出了37项几何误差与关键零部件的子坐标,在此基础上完成了五轴数控机床加工精度模型的建立。验证试验证实,该五轴数控机床的加工精度模型有着较高的预测性能,可以投入正常的机械制造生产中。  相似文献   

5.
基于多体系统基本理论推导出相邻体理想坐标变换以及误差变换矩阵并通过拓扑方法拓展到任一体理想坐标及误差变化公式。进而应用到五轴机床对应的零部件进行机床几何误差建模。最后推导出刀具形成点与工件被加工点的空间位置误差模型。并结合实验探究五轴数控机床37项误差参数对实际运动中的刀具形成点的位置误差影响,为之后的误差补偿和机床精度预测奠定理论基础。  相似文献   

6.
对某五轴联动龙门铣床进行几何误差分析,并结合机床拓扑结构和多体系统理论的理想的位置、运动矩阵、位置、运动误差矩阵,利用激光干涉仪进行机床仅沿三坐标轴方向运动的误差检测,辨识滚角误差;平动轴的各项几何误差经补偿后,使用雷尼绍球杆仪分别与三坐标轴的方向平行,进行C回转轴误差检测,再使得球杆仪安装沿Y轴有一偏移量,进行B轴的误差检测,辨识线位移误差和角位移误差。最终,得到五轴联动龙门铣床的37项几何误差参数,为后续的误差补偿奠定基础。  相似文献   

7.
五轴数控机床是实现工件复杂表面精密加工的重要设备,而机床本身精度是保证加工精度的重要前提。以一台大型五轴数控加工机床为研究对象,分析各项误差,应用多体系统运动学理论,建立移动轴与旋转轴的几何误差数学模型,推导出刀具相对工件坐标系的位置与姿态误差表达式,为误差补偿提供精确数学模型,提高机床加工精度。  相似文献   

8.
摆动主轴作为五轴加工领域的关键零部件,其摆动精度在很大程度上决定了数控机床的加工精度。文中阐述了TS640测头的工作原理及在建立摆动误差模型时的应用,对摆动误差进行测量,并建立了误差补偿的数学模型。为数控机床的误差补偿提供理论依据,提高了五轴数控加工中心的加工精度。  相似文献   

9.
赵磊  丁辉  程凯 《机械设计与制造》2013,(2):163-165,168
目前机床误差补偿成为提高数控机床加工精度的一种重要有效手段,而机床各轴多项误差的辨识/预测则是数控机床误差补偿的核心部分。为此提出一种新颖的机床误差辨识方法—通过试切特征样件来分离出机床XYZ三轴导轨的各项误差。应用多体系统运动学理论建立三轴数控机床的空间误差模型,在此基础上反求出具有特殊加工工艺参数与位置参数的几何要素集,通过测量由这些几何要素构成的样件辨识出机床XYZ三轴各项误差。以辨识机床X导轨的、、三项误差为例进行了理论推导,以为指标通过模型仿真与初步实验验证了该方法的可行性。  相似文献   

10.
TTTRR型五轴数控机床通用几何误差补偿关键技术的研究   总被引:1,自引:1,他引:0  
基于多体系统运动学理论,针对TTTRR型五轴数控机床几何误差补偿的关键技术进行研究,建立误差模型,并推导出其精密加工方程和逆变数控指令的求解方法。在此基础上基于OpenGL开发了五轴数控机床刀具加工轨迹仿真模块,以便真实展现空间自由曲面加工路径,并加以对比,验证误差补偿效果。  相似文献   

11.
提高五轴数控机床精度的常用方法有几何精度调整、位置误差补偿、RTCP参数补偿。实践证明,这些方法已很难实现联动精度的进一步提高。为有效解决这一问题,突破现有精度调试方法,提出一种新的综合误差补偿方法,分析其补偿原理,建立了数控机床通用误差补偿表达式,通过在CA摆五轴数控机床的应用,使得联动精度提高了0.02mm,验证了该补偿方法的实用性。联动精度的提高同时也使得试切"S"件外形轮廓尺寸公差从±0.05[2]mm提高到±0.03mm。  相似文献   

12.
为提高复杂曲面零件的数控机床原位检测精度,分析影响接触式检测系统精度的各项因素及其误差补偿方法。对检测系统的主要误差来源如机床几何误差、测头预行程误差和测头半径误差进行分析研究。在对数控机床的几何误差进行分析和建模的基础上,采用激光干涉仪进行三轴数控机床的单项误差测量和补偿;针对测头检测过程中存在的预行程误差,提出基于径向基函数(Radial basis function, RBF)的预行程误差预测方法,获得测头预行程误差分布图,并对检测系统进行实时预行程误差的补偿;提出改进的三角网格模型顶点法矢计算方法,有效进行三维测头的半径补偿。通过实例零件的加工精度原位检测试验及其与三坐标测量机CMM检验结果的比较,验证了原位检测方法的有效性。  相似文献   

13.
实时误差补偿技术是近代机床技术的研究重点,多轴数控机床的误差补偿问题有很高的难度和研究价值。本文提出了基于多体系统的五轴数控机床几何误差建模技术,研究了误差补偿的关键,即表示几何误差的参数,同时为了评估建模的好坏,研究了基于多体系统的切削工件过程仿真。  相似文献   

14.
针对五轴加工中心回转轴运动精度问题,基于多体系统理论,对回转轴运动拓扑结构进行描述.建立数控机床精密加工条件方位约束方程,研究了回转数控指令的迭代修正求解。在此基础上,利用C#语言编制误差补偿和仿真分析软件,通过试验检验,证明本文提出的补偿方法可使机床加工精度大大提高,为将来实际应用奠定了理论基础。  相似文献   

15.
分析了影响机床精度的误差来源及运动副的误差运动学原理。以一台三轴数控机床为研究对象,利用低序体阵列描述多体系统拓扑结构,用特征矩阵表示多体系统中间体的相对位置和姿态,建立误差综合数学模型,模型中不仅包含了几何误差且包含了热误差和切削力误差,可为其他类型的机床误差综合建模及补偿提供参考。  相似文献   

16.
为降低转动轴几何误差对转台-摆头式五轴机床精度的影响,提出了基于球杆仪的位置无关几何误差测量和辨识方法。基于多体系统理论及齐次坐标变换方法建立了转台-摆头式五轴机床位置无关几何误差模型,依据旋转轴不同运动状态下的几何误差影响因素建立基于圆轨迹的四种测量模式,并实现10项位置无关几何误差的辨识。利用所建立的几何误差模型进行数值模拟,确定转动轴的10项位置无关几何误差对测量轨迹的影响。最后,采用误差补偿的形式实验验证所提出的测量及辨识方法的有效性,将位置无关几何误差补偿前后的测量轨迹进行比较。误差补偿后10项位置无关几何误差的平均补偿率为70.4%,最大补偿率达到88.4%,实验结果表明所提出的建模和辨识方法可用于转台-摆头式五轴机床转动轴精度检测,同时可为机床精度评价及几何精度提升提供依据。  相似文献   

17.
《工具技术》2017,(12):140-143
为了提高某龙门铣床y、z向的加工精度,研究了该机床y、z轴关键几何误差的建模、辨识及补偿方法。建立了y、z轴几何误差和加工误差之间的误差模型,得到了影响龙门铣床y、z向加工精度的5项关键几何误差;通过测量龙门铣床y、z轴平面内4条直线的定位误差,辨识出5项关键几何误差;基于龙门铣床的数控系统和建立的误差模型,通过修改加工代码的方法对几何误差进行了补偿。结果表明:龙门铣床关键点的y、z向加工误差分别减小了66.81%和47.17%,几何误差补偿后龙门铣床的加工精度明显提高。  相似文献   

18.
随着复合数控机床应用的日益普及,对其加工精度的要求也越来越高,为此,需要系统研究复合数控机床的加工误差以及相应的误差补偿方法。根据多体系统运动学理论,以多体系统拓扑结构分析理论为基础,推导出复合数控机床的车削操作和铣削操作的精密加工方程式,为进一步研究复合数控机床加工的误差补偿方法和相应的仿真分析奠定了基础。  相似文献   

19.
多轴数控机床加工系统控制程序一直是影响工业加工精度的关键所在,鉴于此,构造了一种基于控制程序的多轴数控机床几何误差补偿方法,能有效降低制造过程产生的几何误差的影响。首先,通过干涉测量体积误差情况,可在机器无需机械调整的前提下提高加工和测量精度;再根据机器工作区的体积误差分布,设计基于映射的数控程序补偿策略,以便获得最小误差。误差补偿测试对比结果表明,该方法可有效降低三轴数控机床的误差,具有较好的误差补偿及精度分配效果。  相似文献   

20.
针对三轴义齿雕铣机在加工过程中存在空间误差较大、加工精度较低等缺点,提出了一种对空间误差实施解析与补偿的新方法。首先分析机床拓扑结构,利用多体系统理论确定机床低序体阵列和运动学约束链,建立空间误差模型。然后对三轴雕铣机的各项几何误差进行测量并求解其空间误差值,分别计算各项几何误差相对于机床空间误差的相关性系数,以辨识对空间精度影响较大的重要几何误差分量。最后利用线性回归模型建立空间误差与位置的隐射函数,以便建立空间误差补偿模型。以z轴为例,对所建立的误差补偿模型进行实验验证。结果表明通过补偿后z轴空间误差从1. 26 mm降低到0. 735 mm,降幅为41. 7%,义齿加工精度得到了有效的提高,可见该方法有一定的实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号