首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
There are limited data describing pollutant levels inside homes that burn solid fuel within developed country settings with most studies describing test conditions or the effect of interventions. This study recruited homes in Ireland and Scotland where open combustion processes take place. Open combustion was classified as coal, peat, or wood fuel burning, use of a gas cooker or stove, or where there is at least one resident smoker. Twenty-four-hour data on airborne concentrations of particulate matter<2.5 μm in size (PM2.5), carbon monoxide (CO), endotoxin in inhalable dust and carbon dioxide (CO2), together with 2-3 week averaged concentrations of nitrogen dioxide (NO2) were collected in 100 houses during the winter and spring of 2009-2010. The geometric mean of the 24-h time-weighted-average (TWA) PM2.5 concentration was highest in homes with resident smokers (99 μg/m3--much higher than the WHO 24-h guidance value of 25 μg/m3). Lower geometric mean 24-h TWA levels were found in homes that burned coal (7 μg/m3) or wood (6 μg/m3) and in homes with gas cookers (7 μg/m3). In peat-burning homes, the average 24-h PM2.5 level recorded was 11 μg/m3. Airborne endotoxin, CO, CO2, and NO2 concentrations were generally within indoor air quality guidance levels. PRACTICAL IMPLICATIONS: Little is known about indoor air quality (IAQ) in homes that burn solid or fossil-derived fuels in economically developed countries. Recent legislative changes have moved to improve IAQ at work and in enclosed public places, but there remains a real need to begin the process of quantifying the health burden that arises from indoor air pollution within domestic environments. This study demonstrates that homes in Scotland and Ireland that burn solid fuels or gas for heating and cooking have concentrations of air pollutants generally within guideline levels. Homes where combustion of cigarettes takes place have much poorer air quality.  相似文献   

2.
A six‐month winter‐spring study was conducted in a suburb of the northern European city of Kuopio, Finland, to identify and quantify factors determining daily personal exposure and home indoor levels of fine particulate matter (PM2.5, diameter <2.5 µm) and its light absorption coefficient (PM2.5abs), a proxy for combustion‐derived black carbon. Moreover, determinants of home indoor ozone (O3) concentration were examined. Local central site outdoor, home indoor, and personal daily levels of pollutants were monitored in this suburb among 37 elderly residents. Outdoor concentrations of the pollutants were significant determinants of their levels in home indoor air and personal exposures. Natural ventilation in the detached and row houses increased personal exposure to PM2.5, but not to PM2.5abs, when compared with mechanical ventilation. Only cooking out of the recorded household activities increased indoor PM2.5. The use of a wood stove room heater or wood‐fired sauna stove was associated with elevated concentrations of personal PM2.5 and PM2.5abs, and indoor PM2.5abs. Candle burning increased daily indoor and personal PM2.5abs, and it was also a determinant of indoor ozone level. In conclusion, relatively short‐lasting wood and candle burning of a few hours increased residents’ daily exposure to potentially hazardous, combustion‐derived carbonaceous particulate matter.  相似文献   

3.
Fine particle number concentration (D(p)>10 nm, cm(-3)), mass concentrations (approximation of PM(2.5), microg m(-3)) and indoor/outdoor number concentration ratio (I/O) measurements have been conducted for the first time in 11 urban households in India, 2002. The results indicate remarkable high indoor number and mass concentrations and I/O number concentration ratios caused by cooking. Besides cooking stoves that used liquefied petroleum gas (LPG) or kerosene as the main fuel, high indoor concentrations can be explained by poor ventilation systems. Particle number concentrations of more than 300,000 cm(-3) and mass concentrations of more than 1000 microg m(-3) were detected in some cases. When the number and mass concentrations during cooking times were statistically compared, a correlation coefficient r>0.50 was observed in 63% of the households. Some households used other fuels like wood and dung cakes along with the main fuel, but also other living activities influenced the concentrations. In some areas, outdoor combustion processes had a negative impact on indoor air quality. The maximum concentrations observed in most cases were due to indoor combustion sources. Reduction of exposure risk and health effects caused by poor indoor air in urban Indian households is possible by improving indoor ventilation and reducing penetration of outdoor particles.  相似文献   

4.
The impact of an improved wood burning stove (Patsari) in reducing personal exposures and indoor concentrations of particulate matter (PM(2.5)) and carbon monoxide (CO) was evaluated in 60 homes in a rural community of Michoacan, Mexico. Average PM(2.5) 24-h personal exposure was 0.29 mg/m(3) and mean 48-h kitchen concentration was 1.269 mg/m(3) for participating women using the traditional open fire (fogon). If these concentrations are typical of rural conditions in Mexico, a large fraction of the population is chronically exposed to levels of pollution far higher than ambient concentrations found by the Mexican government to be harmful to human health. Installation of an improved Patsari stove in these homes resulted in 74% reduction in median 48-h PM(2.5) concentrations in kitchens and 35% reduction in median 24-h PM(2.5) personal exposures. Corresponding reductions in CO were 77% and 78% for median 48-h kitchen concentrations and median 24-h personal exposures, respectively. The relationship between reductions in median kitchen concentrations and reductions in median personal exposures not only changed for different pollutants, but also differed between traditional and improved stove type, and by stove adoption category. If these reductions are typical, significant bias in the relationship between reductions in particle concentrations and reductions in health impacts may result, if reductions in kitchen concentrations are used as a proxy for personal exposure reductions when evaluating stove interventions. In addition, personal exposure reductions for CO may not reflect similar reductions for PM(2.5). This implies that PM(2.5) personal exposure measurements should be collected or indoor measurements should be combined with better time-activity estimates, which would more accurately reflect the contributions of indoor concentrations to personal exposures. PRACTICAL IMPLICATIONS: Installation of improved cookstoves may result in significant reductions in indoor concentrations of carbon monoxide and fine particulate matter (PM(2.5)), with concurrent but lower reductions in personal exposures. Significant errors may result if reductions in kitchen concentrations are used as a proxy for personal exposure reductions when evaluating stove interventions in epidemiological investigations. Similarly, time microenvironment activity models in these rural homes do not provide robust estimates of individual exposures due to the large spatial heterogeneity in pollutant concentrations and the lack of resolution of time activity diaries to capture movement through these microenvironments.  相似文献   

5.
Indoor air pollution (IAP) from biomass fuels contains high concentrations of health damaging pollutants and is associated with an increased risk of childhood pneumonia. We aimed to design an exposure measurement component for a matched case-control study of IAP as a risk factor for pneumonia and severe pneumonia in infants and children in The Gambia. We conducted co-located simultaneous area measurement of carbon monoxide (CO) and particles with aerodynamic diameter <2.5 microm (PM(2.5)) in 13 households for 48 h each. CO was measured using a passive integrated monitor and PM(2.5) using a continuous monitor. In three of the 13 households, we also measured continuous PM(2.5) concentration for 2 weeks in the cooking, sleeping, and playing areas. We used gravimetric PM(2.5) samples as the reference to correct the continuous PM(2.5) for instrument measurement error. Forty-eight hour CO and PM(2.5) concentrations in the cooking area had a correlation coefficient of 0.80. Average 48-h CO and PM(2.5) concentrations in the cooking area were 3.8 +/- 3.9 ppm and 361 +/- 312 microg/m3, respectively. The average 48-h CO exposure was 1.5 +/- 1.6 ppm for children and 2.4 +/- 1.9 ppm for mothers. PM(2.5) exposure was an estimated 219 microg/m3 for children and 275 microg/m3 for their mothers. The continuous PM(2.5) concentration had peaks in all households representing the morning, midday, and evening cooking periods, with the largest peak corresponding to midday. The results are used to provide specific recommendations for measuring the exposure of infants and children in an epidemiological study. PRACTICAL IMPLICATIONS: Measuring personal particulate matter (PM) exposure of young children in epidemiological studies is hindered by the absence of small personal monitors. Simultaneous measurement of PM and carbon monoxide suggests that a combination of methods may be needed for measuring children's PM exposure in areas where household biomass combustion is the primary source of indoor air pollution. Children's PM exposure in biomass burning homes in The Gambia is substantially higher than concentrations in the world's most polluted cities.  相似文献   

6.
Abstract Abstract In developing countries biomass combustion is a frequently used source of domestic energy and may cause indoor air pollution. Carbon monoxide (CO) and particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) were measured in kitchens using wood or natural gas (NG) in a semi‐rural community in Pakistan. Daytime CO and PM2.5 levels were measured for eight continuous hours in 51 wood and 44 NG users from December 2005 to April 2006. The laser photometer PM2.5 (Dustrak, TSI) was calibrated for field conditions and PM2.5 measurements were reduced by a factor of 2.77. CO was measured by an electrochemical monitor (Model T15v, Langan). The arithmetic mean for daytime CO concentration was 29.4 ppm in wood users; significantly higher than 7.5 ppm in NG users (P < 0.001). The arithmetic mean for daytime PM2.5 concentrations was 2.74 mg/m3 in wood users; significantly higher than 0.38 mg/m3 in NG users (P < 0.001). Higher peak levels of CO and PM2.5 were also observed in wood users. Time spent in the kitchen during fuel burning was significantly related to increasing CO and PM2.5 concentrations in wood users. These findings suggest that cooking with wood fuel may lead to hazardous concentrations of CO and PM2.5.  相似文献   

7.
Area 22-h average carbon monoxide (CO), total suspended particulates (TSP), particles less than 10 microns in diameter (PM10), and particles less than 2.5 microns in diameter (PM2.5) measurements were made in three test homes of highland rural Guatemala in kitchens, bedrooms, and outdoors on a longitudinal basis, i.e. before and after introduction of potential exposure-reducing interventions. Four cookstove conditions were studied sequentially: background (no stove in use); traditional open woodstove, improved woodstove with flue (plancha), and bottled-gas (LPG) stove. With nine observations each, kitchen PM2.5 levels were 56 micrograms/m3 under background conditions, 528 micrograms/m3 for open fire conditions, 96 micrograms/m3 for plancha conditions, and 57 micrograms/m3 for gas stove conditions. Corresponding PM10/TSP levels were 173/174, 717/836, 210/276, 186/218 micrograms/m3. Corresponding CO levels were 0.2, 5.9, 1.4, 1.2 ppm. Comparisons with other studies in the area indicate that the reductions in indoor concentrations achieved by improved wood-burning stoves deteriorate with stove age. Mother and child personal CO and PM2.5 measurements for each stove condition demonstrate the same trend as area measurements, but with less differentiation.  相似文献   

8.
Poor households in Bangladesh depend heavily on wood, dung and other biomass fuels for cooking. This paper provides a detailed analysis of the implications for indoor air pollution (IAP), drawing on new 24-h monitoring data for respirable airborne particulates (PM10). A stratified sample of 236 households was selected in Dhaka and Narayanganj, with a particular focus on fuel use, cooking locations, structural materials, ventilation practices, and other potential determinants of exposure to IAP. At each household, PM10 concentrations in the kitchen and living room were monitored for a 24-h period during December, 2003-February, 2004. Concentrations of 300 microg/m3 or greater are common in our sample, implying widespread exposure to a serious health hazard. A regression analysis for these 236 households was then conducted to explore the relationships between PM10 concentrations, fuel choices and a large set of variables that describe household cooking and ventilation practices, structure characteristics and building materials. As expected, our econometric results indicate that fuel choice significantly affects indoor pollution levels: natural gas and kerosene are significantly cleaner than biomass fuels. However, household-specific factors apparently matter more than fuel choice in determining PM10 concentrations. In some biomass-burning households, concentrations are scarcely higher than in households that use natural gas. Our results suggest that cross-household variation is strongly affected by structural arrangements: cooking locations, construction materials, and ventilation practices. A large variation in PM10 was also found during the 24-h cycle within households. For example, within the 'dirtiest' firewood-using household in our sample, readings over the 24-h cycle vary from 68 to 4864 microg/m3. Such variation occurs because houses can recycle air very quickly in Bangladesh. After the midday meal, when ventilation is common, air quality in many houses goes from very dirty to reasonably clean within an hour. Rapid change also occurs within households: diffusion of pollution from kitchens to living areas is nearly instantaneous in many cases, regardless of internal space configuration, and living-area concentrations are almost always in the same range as kitchen concentrations. By implication, exposure to dangerous indoor pollution levels is not confined to cooking areas. To assess the broader implications for poor Bangladeshi households, we extrapolate our regression results to representative 600 household samples from rural, peri-urban and urban areas in six regions: Rangpur in the north-west, Sylhet in the north-east, Rajshahi and Jessore in the west, Faridpur in the center, and Cox's Bazar in the south-east. Our results indicate great geographic variation, even for households in the same per capita income group. This variation reflects local differences in fuel use and, more significantly, construction practices that affect ventilation. For households with per capita income 相似文献   

9.
Lung SC  Kao MC  Hu SC 《Indoor air》2003,13(2):194-199
Burning incense to worship Gods and ancestors is a traditional practice prevalent in Asian societies. This work investigated indoor PM10 concentrations resulting from incense burning in household environments under two conditions: closed and ventilated. The exposure concentrations of particle-bound polycyclic aromatic hydrocarbons (PAHs) were estimated. The factors of potential exposure were also evaluated. Under both conditions, samples were taken at three locations: 0.3, 3.5 and 7 m away from the altar during three periods: incense burning, the first 3 h, and the 4-6 h after cessation of combustion. PAH concentrations of incense smoke were assessed in the laboratory. Personal environment monitors were used as sampling instruments. The results showed a significant contribution of incense burning to indoor PM10 and particulate PAH concentrations. PM10 concentrations near the altar during incense burning were 723 and 178 microg/m3, more than nine and 1.6 times background levels, under closed and ventilated conditions, respectively. Exposure concentrations of particle-bound PAHs were 0.088-0.45 microg/m3 during incense burning. On average, PM10 and associated PAH concentrations were about 371 and 0.23 microg/m3 lower, respectively, in ventilated environments compared with closed conditions. Concentrations were elevated for at least 6 h under closed conditions.  相似文献   

10.
An exposure study of children (aged 10-12 years) living in Santiago, Chile, was conducted. Personal, indoor and outdoor fine and inhalable particulate matter (< 2.5 .m in diameter, PM2.5 and < 10 microm in diameter, PM10, respectively), and nitrogen dioxide (NO2) were measured during pilot (N = 8) and main (N = 20) studies, which were conducted during the winters of 1998 and 1999, respectively. For the main study, personal, indoor and outdoor 24-h samples were collected for five consecutive days. Similar mean personal, indoor and outdoor PM2.5 concentrations (69.5, 68.5 and 68.1 microg/m3, respectively) were found. However, for coarse particles (calculated as the difference between measured PM10 and PM2.5, PM2.5-10), indoor and outdoor levels (35.4 and 47.4 microg/m3) were lower than their corresponding personal exposures (76.3 microg/m3). Indoor and outdoor NO2 concentrations were comparable (35.8 and 36.9 ppb) and higher than personal exposures (25.9 ppb). Very low ambient indoor and personal O3 levels were found, which were mostly below the method's limit of detection (LOD). Outdoor particles contributed significantly to indoor concentrations, with effective penetration efficiencies of 0.61 and 0.30 for PM2.5 and PM2.5-10, respectively. Personal exposures were strongly associated with indoor and outdoor concentrations for PM2.5, but weakly associated for PM2.5-10. For NO2, weak associations were obtained for indoor-outdoor and personal-outdoor relationships. This is probably a result of the presence of gas cooking stoves in all the homes. Median I/O, P/I and P/O ratios for PM2.5 were close to unity, and for NO2 they ranged between 0.64 and 0.95. These ratios were probably due to high ambient PM2.5 and NO2 levels in Santiago, which diminished the relative contribution of indoor sources and subjects' activities to indoor and personal PM2.5 and NO2 levels.  相似文献   

11.
《Energy and Buildings》2006,38(11):1335-1342
A survey, in the form of a questionnaire, of energy consumption patterns in residential households in the rural fringe of Xian city was undertaken during the winter of 2003/2004. More than 200 households were sampled during the survey. The status of fuel consumption, including the use of biomass fuels for cooking and space heating, was investigated. The types of stoves, purpose of the stove use, and characteristics of the residential houses and residents were also reported and analyzed.The purpose of the survey was to clarify the status of energy consumption and to estimate emissions of greenhouse gases and air pollutants in rural areas of China, from the environmental perspective of climate change and indoor to continental scale air pollution. In rural areas of China, biomass (wood and agricultural waste, such as stalks, corn canes and twigs, branches of wood) is the type of fuel most commonly used. It emits several air pollutants: particulate matter (PM), CO, NMHCs, CH4 and high levels of black carbon (BC) – a greenhouse effect aerosol, and organic carbon (OC) – a cooling effect aerosol. However, CO2 emissions from biomass burning are assumed to be zero because of carbon neutrality.From this survey it would then be possible to analyze the fundamentals of emission reduction potential, for air pollutants and greenhouse gases, from the rural household sector in China.  相似文献   

12.
Biomass combustion for cooking and heating releases particulate matter (PM2.5) that contributes to household air pollution. Fuel and stove types affect the chemical composition of household PM, as does infiltration of outdoor PM. Characterization of these impacts can inform future exposure assessments and epidemiologic studies, but is currently limited. In this study, we measured chemical components of PM2.5 (water-soluble organic matter [WSOM], ions, black carbon, elements, organic tracers) in rural Chinese households using traditional biomass stoves, semi-gasifier stoves with pelletized biomass, and/or non-biomass stoves. We distinguished households using one stove type (traditional, semi-gasifier, or LPG/electric) from those using multiple stoves/fuels. WSOM concentrations were higher in households using only semi-gasifier or traditional stoves (31%-33%) than in those with exclusive LPG/electric stove (13%) or mixed stove use (12%-22%). Inorganic ions comprised 14% of PM in exclusive LPG/electric households, compared to 1%-5% of PM in households using biomass. Total PAH content was much higher in households that used traditional stoves (0.8-2.8 mg/g PM) compared to those that did not (0.1-0.3 mg/g PM). Source apportionment revealed that biomass burning comprised 27%-84% of PM2.5 in households using biomass. In all samples, identified outdoor sources (vehicles, dust, coal combustion, secondary aerosol) contributed 10%-20% of household PM2.5.  相似文献   

13.
Exposure assessment studies for particulates have been conducted in several U.S. and European cities; however, exposure data remain sparse for Asian populations whose cultural practices and living styles are distinct from those in the developed world. This study assessed personal PM(10) exposure in urban residents and evaluated PM(10) indoor/outdoor levels in communities with different characteristics. Important factors of personal PM(10) exposure in Taiwan were explored. Sampling was conducted in 6 communities in Taiwan, two in each of the three major metropolitan areas. Up to nine non-smoking volunteers in each community carried personal samplers for 24 h. The geometric means (GM) of PM(10) in personal, indoor and outdoor samples were 76.3 microg/m(3) (geometric standard deviation, GSD=1.8), 73.4 microg/m(3) (GSD=1.5), and 85.8 microg/m(3) (GSD=1.7), respectively. It was found that outdoor levels rather than indoor levels contributed significantly to personal exposure. The important exposure factors include the time spent outdoors and on transportation, riding a motorcycle, passing by factories, cooking or being in the kitchen, and incense burning at home. Motorcycle riding and the proximity to factories are related to the special living and housing characteristics in Taiwan, while incense burning and Chinese cooking are culture-related. Motorcyclists experienced an average of 27.7 microg/m(3) higher PM(10) than others, while subjects passing by a factory were exposed to an average of 38.4 microg/m(3) higher PM(10) than others. Effective control and public education should be applied to reduce the contribution of these PM exposure sources.  相似文献   

14.
PM10 and PM2.5 samples were collected in the indoor environments of four hospitals and their adjacent outdoor environments in Guangzhou, China during the summertime. The concentrations of 18 target elements in particles were also quantified. The results showed that indoor PM2.5 levels with an average of 99 microg m(-3) were significantly higher than outdoor PM2.5 standard of 65 microg m(-3) recommended by USEPA [United States Environmental Protection Agency. Office of Air and Radiation, Office of Air Quality Planning and Standards, Fact Sheet. EPA's Revised Particulate Matter Standards, 17, July 1997] and PM2.5 constituted a large fraction of indoor respirable particles (PM10) by an average of 78% in four hospitals. High correlation between PM2.5 and PM10 (R(2) of 0.87 for indoors and 0.90 for outdoors) suggested that PM2.5 and PM10 came from similar particulate emission sources. The indoor particulate levels were correlated with the corresponding outdoors (R(2) of 0.78 for PM2.5 and 0.67 for PM10), demonstrating that outdoor infiltration could lead to direct transportation into indoors. In addition to outdoor infiltration, human activities and ventilation types could also influence indoor particulate levels in four hospitals. Total target elements accounted for 3.18-5.56% of PM2.5 and 4.38-9.20% of PM10 by mass, respectively. Na, Al, Ca, Fe, Mg, Mn and Ti were found in the coarse particles, while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se existed more in the fine particles. The average indoor concentrations of total elements were lower than those measured outdoors, suggesting that indoor elements originated mainly from outdoor emission sources. Enrichment factors (EF) for trace element were calculated to show that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) were highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Factor analysis was used to identify possible pollution source-types, namely street dust, road traffic and combustion processes.  相似文献   

15.
Particulate matter (PM) air pollution derives from combustion and non‐combustion sources and consists of various chemical species that may differentially impact human health and climate. Previous reviews of PM chemical component concentrations and sources focus on high‐income urban settings, which likely differ from the low‐ and middle‐income settings where solid fuel (ie, coal, biomass) is commonly burned for cooking and heating. We aimed to summarize the concentrations of PM chemical components and their contributing sources in settings where solid fuel is burned. We searched the literature for studies that reported PM component concentrations from homes, personal exposures, and direct stove emissions under uncontrolled, real‐world conditions. We calculated weighted mean daily concentrations for select PM components and compared sources of PM determined by source apportionment. Our search criteria yielded 48 studies conducted in 12 countries. Weighted mean daily cooking area concentrations of elemental carbon, organic carbon, and benzo(a)pyrene were 18.8 μg m?3, 74.0 μg m?3, and 155 ng m?3, respectively. Solid fuel combustion explained 29%‐48% of principal component/factor analysis variance and 41%‐87% of PM mass determined by positive matrix factorization. Multiple indoor and outdoor sources impacted PM concentrations and composition in these settings, including solid fuel burning, mobile emissions, dust, and solid waste burning.  相似文献   

16.
In Baguio City, Philippines, a mountainous city of 252,386 people where 61% of motor vehicles use diesel fuel, ambient particulate matter <2.5 microm (PM(2.5)) and <10 microm (PM(10)) in aerodynamic diameter and carbon monoxide (CO) were measured at 30 street-level locations for 15 min apiece during the early morning (4:50-6:30 am), morning rush hour (6:30-9:10 am) and afternoon rush hour (3:40-5:40 pm) in December 2004. Environmental observations (e.g. traffic-related variables, building/roadway designs, wind speed and direction, etc.) at each location were noted during each monitoring event. Multiple regression models were formulated to determine which pollution sources and environmental factors significantly affect ground-level PM(2.5), PM(10) and CO concentrations. The models showed statistically significant relationships between traffic and early morning particulate air pollution [(PM(2.5)p=0.021) and PM(10) (p=0.048)], traffic and morning rush hour CO (p=0.048), traffic and afternoon rush hour CO (p=0.034) and wind and early morning CO (p=0.044). The mean early morning, street-level PM(2.5) (110+/-8 microg/m3; mean+/-1 standard error) was not significantly different (p-value>0.05) from either rush hour PM(2.5) concentration (morning=98+/-7 microg/m3; afternoon=107+/-5 microg/m3) due to nocturnal inversions in spite of a 100% increase in automotive density during rush hours. Early morning street-level CO (3.0+/-1.7 ppm) differed from morning rush hour (4.1+/-2.3 ppm) (p=0.039) and afternoon rush hour (4.5+/-2.2 ppm) (p=0.007). Additionally, PM(2.5), PM(10), CO, nitrogen dioxide (NO2) and select volatile organic compounds were continuously measured at a downtown, third-story monitoring station along a busy roadway for 11 days. Twenty-four-hour average ambient concentrations were: PM(2.5)=72.9+/-21 microg/m3; CO=2.61+/-0.6 ppm; NO2=27.7+/-1.6 ppb; benzene=8.4+/-1.4 microg/m3; ethylbenzene=4.6+/-2.0 microg/m3; p-xylene=4.4+/-1.9 microg/m3; m-xylene=10.2+/-4.4 microg/m3; o-xylene=7.5+/-3.2 microg/m3. The multiple regression models suggest that traffic and wind in Baguio City, Philippines significantly affect street-level pollution concentrations. Ambient PM(2.5) levels measured are above USEPA daily (65 microg/m3) and Filipino/USEPA annual standards (15 microg/m3) with concentrations of a magnitude rarely seen in most countries except in areas where local topography plays a significant role in air pollution entrapment. The elevated pollution concentrations present and the diesel-rich nature of motor vehicle emissions are important pertaining to human exposure and health information and as such warrant public health concern.  相似文献   

17.
Indoor air pollution (IAP) from domestic biomass combustion is an important health risk factor, yet direct measurements of personal IAP exposure are scarce. We measured 24-h integrated gravimetric exposure to particles < 2.5 μm in aerodynamic diameter (particulate matter, PM?.?) in 280 adult women and 240 children in rural Yunnan, China. We also measured indoor PM?.? concentrations in a random sample of 44 kitchens. The geometric mean winter PM?.? exposure among adult women was twice that of summer exposure [117 μg/m3 (95% CI: 107, 128) vs. 55 μg/m3 (95% CI: 49, 62)]. Children's geometric mean exposure in summer was 53 μg/m3 (95% CI: 46, 61). Indoor PM?.? concentrations were moderately correlated with women's personal exposure (r=0.58), but not for children. Ventilation during cooking, cookstove maintenance, and kitchen structure were significant predictors of personal PM?.? exposure among women primarily cooking with biomass. These findings can be used to develop exposure assessment models for future epidemiologic research and inform interventions and policies aimed at reducing IAP exposure. PRACTICAL IMPLICATIONS: Our results suggest that reducing overall PM pollution exposure in this population may be best achieved by reducing winter exposure. Behavioral interventions such as increasing ventilation during cooking or encouraging stove cleaning and maintenance may help achieve these reductions.  相似文献   

18.
Indoor air quality (IAQ) of a restaurant has increasingly received a lot of public concerns in Hong Kong. Unfortunately, there is limited data about the IAQ of Hong Kong restaurants. In order to characterize the current IAQ of local restaurants, four restaurants in metropolitan Hong Kong including a Korean barbecue style restaurant, a Chinese hot pot restaurant, a Chinese dim sum restaurant and a Western canteen were selected for this study. The results of this study showed that the mean concentrations of CO2 at restaurants with gas stoves for food cooking in dining areas exceeded the range from 40 to 60% indoor CO2 concentrations at restaurants without gas stoves in dining areas. The average levels of PM10 and PM2.5 at the Korean barbecue style restaurant were as high as 1442 and 1167 microg/m3, respectively. At the Korean barbecue and Chinese hot pot restaurants, the levels of PM2.5 accounted for 80-93% of their respective PM10 concentrations. The 1-h average levels of CO observed at Korean barbecue style and hot pot restaurants were 15,100 and 8000 microg/m3, respectively. Relatively high concentrations of CO2, CO, PM10, PM2.5 benzene, toluene, methylene chloride and chloroform were measured in the dining areas of the Korean barbecue style and the Chinese hot pot restaurants. The operations of pan-frying food and boiling food with soup in a hot pot could generate considerable quantities of air pollutants.  相似文献   

19.
Emissions from indoor biomass burning are a major public health concern in developing areas of the world. Less is known about indoor air quality, particularly airborne endotoxin, in homes burning biomass fuel in residential wood stoves in higher income countries. A filter‐based sampler was used to evaluate wintertime indoor coarse particulate matter (PM10‐2.5) and airborne endotoxin (EU/m3, EU/mg) concentrations in 50 homes using wood stoves as their primary source of heat in western Montana. We investigated number of residents, number of pets, dampness (humidity), and frequency of wood stove usage as potential predictors of indoor airborne endotoxin concentrations. Two 48‐h sampling events per home revealed a mean winter PM10‐2.5 concentration (± s.d.) of 12.9 (± 8.6) μg/m3, while PM2.5 concentrations averaged 32.3 (± 32.6) μg/m3. Endotoxin concentrations measured from PM10‐2.5 filter samples were 9.2 (± 12.4) EU/m3 and 1010 (± 1524) EU/mg. PM10‐2.5 and PM2.5 were significantly correlated in wood stove homes (r = 0.36, P < 0.05). The presence of pets in the homes was associated with PM10‐2.5 but not with endotoxin concentrations. Importantly, none of the other measured home characteristics was a strong predictor of airborne endotoxin, including frequency of residential wood stove usage.  相似文献   

20.
Black carbon (BC) emissions from solid fuel combustion are associated with increased morbidity and mortality and are important drivers of climate change. We studied BC measurements, approximated by particulate matter (PM2.5) absorbance, in rural Yunnan province, China, whose residents use a variety of solid fuels for cooking and heating including bituminous and anthracite coal, and wood. Measurements were taken over two consecutive 24‐h periods from 163 households in 30 villages. PM2.5 absorbance (PMabs) was measured using an EEL 043 Smoke Stain Reflectometer. PMabs measurements were higher in wood burning households (16.3 × 10?5/m) than bituminous and anthracite coal households (12 and 5.1 × 10?5/m, respectively). Among bituminous coal users, measurements varied by a factor of two depending on the coal source. Portable stoves (which are lit outdoors and brought indoors for use) were associated with reduced PMabs levels, but no other impact of stove design was observed. Outdoor measurements were positively correlated with and approximately half the level of indoor measurements (r = 0.49, P < 0.01). Measurements of BC (as approximated by PMabs) in this population are modulated by fuel type and source. This provides valuable insight into potential morbidity, mortality, and climate change contributions of domestic usage of solid fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号