首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
钱鹏  徐千军 《工程力学》2017,34(12):39-47
含裂纹孔隙材料渗透性由裂纹的微观结构决定,其研究对工程实践意义重大。该文假设含裂纹孔隙材料是由孔隙基体和裂纹组成的二相复合材料,基于细观均匀化理论给出了四种不同裂纹分布的渗透张量稀疏解、相互作用直推(IDD)解和修正的IDD解。基于单元嵌入技术和弹性比拟的数值模拟方法,采用不连通的离散裂纹模型,研究了裂纹数目对有效渗透系数数值解收敛性的影响及不同裂纹分布的孔隙材料渗透性,并将得到的数值解和理论解对比分析,结果表明:随着裂纹数目的增加,有效渗透系数的变化范围逐渐减小,并最终趋于稳定,而且选择合适的裂纹数目,能同时保证计算的随机收敛性和合理的计算效率;对于所研究的四种分布的裂纹,相比稀疏解,IDD解更接近数值解,但随着裂纹密度的增加,裂纹间的相互作用增强,IDD解会逐渐偏离数值解;修正的IDD解充分考虑了裂纹间的相互作用和边界效应,能更好地估计含裂纹孔隙材料的渗透性。  相似文献   

2.
钱鹏  徐千军 《工程力学》2017,34(7):195-202
该文假设含裂纹的混凝土材料是由孔隙基体和裂纹组成的二相复合材料,基于相互作用直推法(IDD)给出了三维周期裂纹渗透性的表达式。基于单元嵌入技术和弹性比拟的数值模拟新方法,解决了三维细观连续有限元实体模型的建模和网格划分问题,实现了含混凝土裂纹的三维渗透模拟。假设裂纹为圆盘状,引入周期性的概念并提出三维周期裂纹结构模型,分析裂纹直径、裂纹周期、裂纹倾角和裂纹间距等因素对整体等效渗透性能的影响。将得到的数值解和IDD理论解进行对比分析,结果表明:在裂纹密度较低时,数值解和理论解吻合得很好,但随着裂纹密度的增大,二者之间的误差逐渐增大;当裂纹趋于连通时,IDD解低估了裂纹之间的近场相互作用而偏离数值解;裂纹接近连通时,整体等效渗透率与裂纹密度呈对数关系,可用渐进对数表达式准确描述。  相似文献   

3.
This paper presents the development of an alternating method for the interaction analysis of arbitrary distributed numerous elliptical microcracks. The complete analytical solutions (VNA solutions) for a single elliptical crack in an infinite solid, subject to arbitrary crack-face tractions, are implemented in the present alternating method, together with the coordinate transformations for stress tensors. First, the present method is verified by solving the problems of two interacting cracks for which accurate numerical solutions have been obtained previously. Next, the present method demonstrates obtaining efficient and accurate solutions for the problems of many interacting elliptical cracks, which cannot be solved in a practical sense by the ordinary numerical methods such as the finite element method. Furthermore, damaged solids containing periodically distributed elliptical microcracks are analyzed by the present alternating method. The effective elastic moduli are evaluated for varying microcrack density. Detailed structures of the interactions in the damaged solids are visualized and clarified. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
This paper presents the development of an alternating method for the interaction analysis of arbitrary distributed numerous elliptical microcracks. The complete analytical solutions (VNA solutions) for a single elliptical crack in an infinite solid, subject to arbitrary crack-face tractions, are implemented in the present alternating method, together with the coordinate transformations for stress tensors. First, the present method is verified by solving the problems of two interacting cracks for which accurate numerical solutions have been obtained previously. Next, the present method demonstrates obtaining efficient and accurate solutions for the problems of many interacting elliptical cracks, which cannot be solved in a practical sense by the ordinary numerical methods such as the finite element method. Furthermore, damaged solids containing periodically distributed elliptical microcracks are analyzed by the present alternating method. The effective elastic moduli are evaluated for varying microcrack density. Detailed structures of the interactions in the damaged solids are visualized and clarified. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
钱鹏  徐千军 《工程力学》2017,34(4):125-133
混凝土结构在服役过程中受到力学荷载和环境因素的影响会产生裂纹,裂纹的产生、扩展和连通会显著影响混凝土的渗透性。该文将混凝土看作由基体和裂纹夹杂二相组成的复合材料,采用单元嵌入技术,有效地解决了基于连续网格的实体裂纹模型存在的网格协调问题。考虑到弹性问题与渗流问题在数学上的相似性,通过对含裂纹混凝土位移场和应力场的弹性比拟,得到相应的渗流场。在计算过程中,分别研究了渗透系数、网格尺寸及裂纹张开度对渗流场的影响,以及该文方法对多裂纹体的适用性。计算结果表明:该文的方法与实体裂纹模型的渗流场计算结果吻合,保证了结果的正确性。同时也降低了三维裂纹建模的难度,提高了计算的效率。  相似文献   

6.
周春圣  李克非 《工程力学》2013,30(4):150-156
多孔材料的裂纹网络对宏观渗透性的影响显著,正确描述裂纹网络对材料渗透率的影响具有重要的工程意义。该文将开裂多孔材料视作由多孔基体和裂纹夹杂二相组成的复合材料,基于细观力学理论模型中的相互作用直推法(IDD)给出了渗透率张量的IDD理论解。为分析裂纹长度、密度、取向、间距和连通度等裂纹网络细观形貌参数对宏观渗透率的影响,该文使用具有周期结构的重复单元模型建立了二维数值分析模型,采用有限单元法进行数值求解并与IDD理论解进行了对比验证。理论研究表明,IDD理论模型采用单一的开裂密度指标来表征多孔介质的裂纹网络,在开裂密度不大时能够统一地描述裂纹长度、取向、平均横向间距和纵向间距等多个细观形貌指标对材料整体渗透性能的影响,具有良好的适用性和精度;数值分析表明,在裂纹网络的密度不断增大、裂纹相互趋近并最终连通的过程中,IDD理论解逐渐偏离数值解并低估裂纹间相互作用,此时材料渗透率与裂纹密度呈对数关系;网络裂纹一旦连通,整体渗透率则发生突变,此时渗透率的确定需要特别考虑连通裂纹之间的强烈近场相互作用。  相似文献   

7.
We present a comparative study of the ability of some micromechanics estimates to predict the overall properties of heterogeneous materials. We focus mainly on cracked materials, for which this task is difficult and many estimates fail. We study particularly the interaction direct derivative estimate, proposed by Zheng and Du, which is an approximation of the generalized self-consistent scheme, but has the very convenient property to be always explicit. A modified version of this estimate, called full-range IDD by Zheng and Du, yields good results when comparing all poromechanical coefficients predicted by the estimate to finite element simulations of a 2D cracked material in plane strain, up to crack density factors of 1 for aligned cracks and 0.60 for randomly oriented cracks. The accuracy of finite element computations of the overall moduli is also commented by plotting the convergence of the average of the properties as well as the confidence intervals on these averages.  相似文献   

8.
This work presents a new multiscale technique for the efficient simulation of crack propagation and crack coalescence of macrocracks and microcracks. The fully adaptive multiscale method is able to capture localization effect mesh independently. By modeling macrocracks and microcracks, the extended finite element method offers an accurate solution and captures cracks and their propagation without changing the mesh topology. Propagating and coaliting cracks of different length scales can therefore be easily modeled and updated during the computation process. Hence, the presented method is an efficient and accurate option for modeling cracks of different length scales. This is demonstrated in several numerical examples showing the interaction of microcracks and macrocracks. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
An extended finite element method scheme for a static cohesive crack is developed with a new formulation for elements containing crack tips. This method can treat arbitrary cracks independent of the mesh and crack growth without remeshing. All cracked elements are enriched by the sign function so that no blending of the local partition of unity is required. This method is able to treat the entire crack with only one type of enrichment function, including the elements containing the crack tip. This scheme is applied to linear 3‐node triangular elements and quadratic 6‐node triangular elements. To ensure smooth crack closing of the cohesive crack, the stress projection normal to the crack tip is imposed to be equal to the material strength. The equilibrium equation and the traction condition are solved by the Newton–Raphson method to obtain the nodal displacements and the external load simultaneously. The results obtained by the new extended finite element method are compared to reference solutions and show excellent agreement. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
The performance of partition‐of‐unity based methods such as the generalized finite element method or the extended finite element method is studied for the simulation of cohesive cracking. The focus of investigation is on the performance of bilinear quadrilateral finite elements using these methods. In particular, the approximation of the displacement jump field, representing cohesive cracks, by extended finite element method/generalized finite element method and its effect on the overall behavior at element and structural level is investigated. A single element test is performed with two different integration schemes, namely the Newton‐Cotes/Lobatto and the Gauss integration schemes, for the cracked interface contribution. It was found that cohesive crack segments subjected to a nonuniform opening in unstructured meshes (or an inclined crack in a structured finite element mesh) result in an unrealistic crack opening. The reasons for such behavior and its effect on the response at element level are discussed. Furthermore, a mesh refinement study is performed to analyze the overall response of a cohesively cracked body in a finite element analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A new formulation and numerical procedures are developed for the analysis of arbitrary crack propagation in shells using the extended finite element method. The method is valid for completely non‐linear problems. Through‐the‐thickness cracks in sandwich shells are considered. An exact shell kinematics is presented, and a new enrichment of the rotation field is proposed which satisfies the director inextensibility condition. To avoid locking, an enhanced strain formulation is proposed for the 4‐node cracked shell element. A finite strain plane stress constitutive model based on the logarithmic corotational rate is employed. A cohesive zone model is introduced which embodies the special characteristics of the shell kinematics. Stress intensity factors are calculated for selected problems and crack propagation problems are solved. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, the linear free flexural vibration of cracked functionally graded material plates is studied using the extended finite element method. A 4-noded quadrilateral plate bending element based on field and edge consistency requirement with 20 degrees of freedom per element is used for this study. The natural frequencies and mode shapes of simply supported and clamped square and rectangular plates are computed as a function of gradient index, crack length, crack orientation and crack location. The effect of thickness and influence of multiple cracks is also studied.  相似文献   

13.
The Green's function and the boundary element method for analysing fracture behaviour of cracks in piezoelectric half-plane are presented in this paper. By combining Stroh formalism and the concept of perturbation, a general thermoelectroelastic solution for half-plane solid subjected to point heat source and/or temperature discontinuity has been derived. Using the proposed solution and the potential variational principle, a boundary element model (BEM) for 2-D half-plane solid with multiple cracks has been developed and used to calculate the stress intensity factors of the multiple crack problem. The method is available for multiple crack problems in both finite and infinite solids. Numerical results for a two-crack system are presented and compared with those from finite element method (FEM).  相似文献   

14.
A three-dimensional finite element method was used to calculate the stress intensity factors for corner cracked specimens of a single crystal nickel-based superalloy. The anisotropic material properties and inclinations of the cracks were shown to have significant effects on the stress intensities. Then the two-dimensional resolved shear stress approach for predicting the crack planes and crack growth directions in single crystals was extended to the three-dimensional case. Using this approach, the fatigue crack growth behaviour in single crystal corner cracked specimens could be explained.  相似文献   

15.
The fast multipole method (FMM) is applied to the dual boundary element method (DBEM) for the analysis of finite solids with large numbers of microcracks. The application of FMM significantly enhances the run-time and memory storage efficiency. Combining multipole expansions with local expansions, computational complexity and memory requirement are both reduced to O(N), where N is the number of DOFs (degrees of freedom). This numerical scheme is used to compute the effective in-plane bulk modulus of 2D solids with thousands of randomly distributed microcracks. The results prove that the IDD method, the differential method, and the method proposed by Feng and Yu can give proper estimates. The effect of microcrack non-uniform distribution is evaluated, and the numerical results show that non-uniform distribution of microcracks increases the effective in-plane bulk modulus of the whole microcracked solid.  相似文献   

16.
含裂纹梁的动力响应   总被引:7,自引:0,他引:7  
本文提出了一种计算含裂纹梁动力响应的有限元方法.采用时域方法辨识出模态参数,所得固有频率随裂纹长度和位置的变化值与实验结果吻合较好.计算了裂纹闭合而引起的结构响应变化,指出:外激励均值对固有频率影响较显著.最后,给出了判断裂纹位置的方法:用一阶振型和固有频率的差异确定;由不同测点频响函数变化来估计.  相似文献   

17.
The extended finite element method (XFEM) is applied to the simulation of thermally stressed, cracked solids. Both thermal and mechanical fields are enriched in the XFEM way in order to represent discontinuous temperature, heat flux, displacement, and traction across the crack surface, as well as singular heat flux and stress at the crack front. Consequently, the cracked thermomechanical problem may be solved on a mesh that is independent of the crack. Either adiabatic or isothermal condition is considered on the crack surface. In the second case, the temperature field is enriched such that it is continuous across the crack but with a discontinuous derivative and the temperature is enforced to the prescribed value by a penalty method. The stress intensity factors are extracted from the XFEM solution by an interaction integral in domain form with no crack face integration. The method is illustrated on several numerical examples (including a curvilinear crack, a propagating crack, and a three‐dimensional crack) and is compared with existing solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the extended finite element method (X‐FEM) formulation for the modeling of arbitrary crack propagation in coupled shell/solid structures is developed based on the large deformation continuum‐based (CB) shell theory. The main features of the new method are as follows: (1) different kinematic equations are derived for different fibers in CB shell elements, including the fibers enriched by shifted jump function or crack tip functions and the fibers cut into two segments by the crack surface or connecting with solid elements. So the crack tip can locate inside the element, and the crack surface is not necessarily perpendicular to the middle surface. (2) The enhanced CB shell element is developed to realize the seamless transition of crack propagation between shell and solid structures. (3) A revised interaction integral is used to calculate the stress intensity factor (SIF) for shells, which avoids that the auxiliary fields for cracks in Mindlin–Reissner plates cannot satisfy exactly the equilibrium equations. Several numerical examples, including the calculation of SIF for the cracked plate under uniform bending and crack propagation between solid and shell structures are presented to demonstrate the performance of the developed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A comprehensive finite element study is made of the two-dimensional problem of the interaction between a main crack and arbitrarily located and oriented microcracks near its tip. The finite element results of the normalized mode I stress intensity factor at the main crack were compared with an analytical model. The analytical model, which is based on the complex potentials of Muskhelishvili, utilizes the superposition principle in developing the appropriate stress intensity factor solutions at the main crack. Specifically, the analytical work of Gong and Horii (J. Mech. Phys. Solids 37, 27–46 (1989)) was adopted here. The work was further extended to evaluate the different contour levels of the stress intensity factor at the main crack and the associated regions of shielding and amplification for different locations and orientations of microcracks. The findings of the present work are also compared with earlier solutions and efforts are devoted to highlight inconsistencies and limitations of the simplifying assumptions of the earlier studies. The results of this study should provide valuable insight into the near tip microcracking phenomenon in brittle materials and surface delayed cracks in hydrogenated and outgassed austenitic stainless steels.  相似文献   

20.
The cracking processes during the indentation test of brittle solids is simulated by means of the finite element method (FEM) using elements exhibiting cohesive post-failure behaviour and alumina as the model material. The results show that at low indentation loads, median cracks could nucleate at full loading but Palmqvist cracks only nucleate in the unloading stage and that they may not join up even after full unloading. Such cracks are stable as they are embedded in a region of high hydrostatic compression throughout the indentation test. At high indentation loads, both median and Palmqvist cracks nucleate early during the loading stage and coalesce to form a half-penny crack on further loading. Although the cracks are embedded in a region of high hydrostatic compression during loading, an annular tensile region eventually develops in between the cracked material beneath the indenter and the surrounding uncracked material during the unloading stage of the macro-indentation. This not only provides the driving force for existing cracks to grow but also new crack systems to form. The present work shows that for brittle solids with negligible plastic deformation, the mismatch in elastic recovery between the cracked and uncracked bodies on unloading plays an important role in indentation fracture processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号