首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 513 毫秒
1.
As an essential member of 2D materials, MXene (e.g., Ti3C2Tx) is highly preferred for energy storage owing to a high surface‐to‐volume ratio, shortened ion diffusion pathway, superior electronic conductivity, and neglectable volume change, which are beneficial for electrochemical kinetics. However, the low theoretical capacitance and restacking issues of MXene severely limit its practical application in lithium‐ion batteries (LIBs). Herein, a facile and controllable method is developed to engineer 2D nanosheets of negatively charged MXene and positively charged layered double hydroxides derived from ZIF‐67 polyhedrons into 3D hollow frameworks via electrostatic self‐assembling. After thermal annealing, transition metal oxides (TMOs)@MXene (CoO/Co2Mo3O8@MXene) hollow frameworks are obtained and used as anode materials for LIBs. CoO/Co2Mo3O8 nanosheets prevent MXene from aggregation and contribute remarkable lithium storage capacity, while MXene nanosheets provide a 3D conductive network and mechanical robustness to facilitate rapid charge transfer at the interface, and accommodate the volume expansion of the internal CoO/Co2Mo3O8. Such hollow frameworks present a high reversible capacity of 947.4 mAh g?1 at 0.1 A g?1, an impressive rate behavior with 435.8 mAh g?1 retained at 5 A g?1, and good stability over 1200 cycles (545 mAh g?1 at 2 A g?1).  相似文献   

2.
In this work, hydroxyl‐functionalized Mo2C‐based MXene nanosheets are synthesized by facilely removing the Sn layer of Mo2SnC. The hydroxyl‐functionalized surface of Mo2C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface and LiPSs. Carbon nanotubes (CNTs) are further introduced into Mo2C phase to enlarge the specific surface area of the composite, improve its electronic conductivity, and alleviate the volume change during discharging/charging. The strong surface‐bound sulfur in the hierarchical Mo2C‐CNTs host can lead to a superior electrochemical performance in lithium–sulfur batteries. A large reversible capacity of ≈925 mAh g ? 1 is observed after 250 cycles at a current density of 0.1 C (1 C = 1675 mAh g?1) with good rate capability. Notably, the electrodes with high loading amounts of sulfur can also deliver good electrochemical performances, i.e., initial reversible capacities of ≈1314 mAh g?1 (2.4 mAh cm?2), ≈1068 mAh g?1 (3.7 mAh cm?2), and ≈959 mAh g?1 (5.3 mAh cm?2) at various areal loading amounts of sulfur (1.8, 3.5, and 5.6 mg cm?2) are also observed, respectively.  相似文献   

3.
Carbon materials have received considerable attention as host cathode materials for sulfur in lithium–sulfur batteries; N‐doped carbon materials show particularly high electrocatalytic activity. Efforts are made to synthesize N‐doped carbon materials by introducing nitrogen‐rich sources followed by sintering or hydrothermal processes. In the present work, an in situ hollow cathode discharge plasma treatment method is used to prepare 3D porous frameworks based on N‐doped graphene as a potential conductive matrix material. The resulting N‐doped graphene is used to prepare a 3D porous framework with a S content of 90 wt% as a cathode in lithium–sulfur cells, which delivers a specific discharge capacity of 1186 mAh g?1 at 0.1 C, a coulombic efficiency of 96% after 200 cycles, and a capacity retention of 578 mAh g?1 at 1.0 C after 1000 cycles. The performance is attributed to the flexible 3D structure and clustering of pyridinic N‐dopants in graphene. The N‐doped graphene shows high electrochemical performance and the flexible 3D porous stable structure accommodates the considerable volume change of the active material during lithium insertion and extraction processes, improving the long‐term electrochemical performance.  相似文献   

4.
Exploring flexible lithium‐ion batteries is required with the ever‐increasing demand for wearable and portable electronic devices. Selecting a flexible conductive substrate accompanying with closely coupled active materials is the key point. Here, a lightweight, flexible, and freestanding MXene/liquid metal paper is fabricated by confining 3 °C GaInSnZn liquid metal in the matrix of MXene paper without any binder or conductive additive. When used as anode for lithium‐ion cells, it can deliver a high discharge capacity of 638.79 mAh g?1 at 20 mA g?1. It also exhibits satisfactory rate capacities, with discharge capacities of 507.42, 483.33, 480.22, 452.30, and 404.47 mAh g?1 at 50, 100, 200, 500, and 1000 mA g?1, respectively. The cycling performance is obviously improved by slightly reducing the charge–discharge voltage range. The composite paper also has better electrochemical performance than liquid metal coated Cu foil. This study proposes a novel flexible anode by a clever combination of MXene paper and low‐melting point liquid metal, paving the way for next‐generation lithium‐ion batteries.  相似文献   

5.
2D metal‐porphyrin frameworks (MPFs) are attractive for advanced energy storage devices. However, the inferior conductivity and low structural stability of MPFs seriously limit their application as flexible free‐standing electrodes with high performance. Here, for the first time, an interlayer hydrogen‐bonded MXene/MPFs film is proposed to overcome these disadvantages by intercalation of highly conductive MXene nanosheets into MPFs nanosheets via a vacuum‐assisted filtration technology. The alternant insertion of MXene and MPFs affords 3D interconnected “MPFs‐to‐MXene‐to‐MPFs” conductive networks to accelerate the ionic/electronic transport rates. Meanwhile, the interlayer hydrogen bonds (F···H? O and O···H? O) contribute a high chemical stability due to a favorable tolerance to volume change caused by phase separation and structural collapse during the charge/discharge process. The synergistic effect makes MXene/MPFs film deliver a capacitance of 326.1 F g?1 at 0.1 A g?1, 1.64 F cm?2 at 1 mA cm?2, 694.2 F cm?3 at 1 mA cm?3 and a durability of about 30 000 cycles. The flexible symmetric supercapacitor shows an areal capacitance of 408 mF cm?2, areal energy density of 20.4 µW h cm?2, and capacitance retention of 95.9% after 7000 cycles. This work paves an avenue for the further exploration of 2D MOFs in flexible energy storage devices.  相似文献   

6.
The synthesis of low‐dimensional transition metal nitride (TMN) nanomaterials is developing rapidly, as their fundamental properties, such as high electrical conductivity, lead to many important applications. However, TMN nanostructures synthesized by traditional strategies do not allow for maximum conductivity and accessibility of active sites simultaneously, which is a crucial factor for many applications in plasmonics, energy storage, sensing, and so on. Unique interconnected two‐dimensional (2D) arrays of few‐nanometer TMN nanocrystals not only having electronic conductivity in‐plane, but also allowing transport of ions and electrolyte through the porous nanosheets, which are obtained by topochemical synthesis on the surface of a salt template, are reported. As a demonstration of their application in a lithium–sulfur battery, it is shown that 2D arrays of several nitrides can achieve a high initial capacity of >1000 mAh g?1 at 0.2 C and only about 13% degradation over 1000 cycles at 1 C under a high areal sulfur loading (>5 mg cm?2).  相似文献   

7.
The ingenious design of a freestanding flexible electrode brings the possibility for power sources in emerging wearable electronic devices. Here, reduced graphene oxide (rGO) wraps carbon nanotubes (CNTs) and rGO tightly surrounded by MnO2 nanosheets, forming a 3D multilevel porous conductive structure via vacuum freeze‐drying. The sandwich‐like architecture possesses multiple functions as a flexible anode for lithium‐ion batteries. Micrometer‐sized pores among the continuously waved rGO layers could extraordinarily improve ion diffusion. Nano‐sized pores among the MnO2 nanosheets and CNT/rGO@MnO2 particles could provide vast accessible active sites and alleviate volume change. The tight connection between MnO2 and carbon skeleton could facilitate electron transportation and enhance structural stability. Due to the special structure, the rGO‐wrapped CNT/rGO@MnO2 porous film as an anode shows a high capacity, excellent rate performance, and superior cycling stability (1344.2 mAh g−1 over 630 cycles at 2 A g−1, 608.5 mAh g−1 over 1000 cycles at 7.5 A g−1). Furthermore, the evolutions of microstructure and chemical valence occurring inside the electrode after cycling are investigated to illuminate the structural superiority for energy storage. The excellent electrochemical performance of this freestanding flexible electrode makes it an attractive candidate for practical application in flexible energy storage.  相似文献   

8.
The lithium and sodium storage performances of SnS anode often undergo rapid capacity decay and poor rate capability owing to its huge volume fluctuation and structural instability upon the repeated charge/discharge processes. Herein, a novel and versatile method is described for in situ synthesis of ultrathin SnS nanosheets inside and outside hollow mesoporous carbon spheres crosslinked reduced graphene oxide networks. Thus, 3D honeycomb‐like network architecture is formed. Systematic electrochemical studies manifest that this nanocomposite as anode material for lithium‐ion batteries delivers a high charge capacity of 1027 mAh g?1 at 0.2 A g?1 after 100 cycles. Meanwhile, the as‐developed nanocomposite still retains a charge capacity of 524 mAh g?1 at 0.1 A g?1 after 100 cycles for sodium‐ion batteries. In addition, the electrochemical kinetics analysis verifies the basic principles of enhanced rate capacity. The appealing electrochemical performance for both lithium‐ion batteries and sodium‐ion batteries can be mainly related to the porous 3D interconnected architecture, in which the nanoscale SnS nanosheets not only offer decreased ion diffusion pathways and fast Li+/Na+ transport kinetics, but also the 3D interconnected conductive networks constructed from the hollow mesoporous carbon spheres and reduced graphene oxide enhance the conductivity and ensure the structural integrity.  相似文献   

9.
The insulator of the sulfur cathode and the easy dendrites growth of the lithium anode are the main barriers for lithium–sulfur cells in commercial application. Here, a 3D NPC@S/3D NPC@Li full cell is reported based on 3D hierarchical and continuously porous nickel photonic crystal (NPC) to solve the problems of sulfur cathode and lithium anode at the same time. In this case, the 3D NPC@S cathode can not only offer a fast transfer of electron and lithium ion, but also effectively prevent the dissolution of polysulfides and the tremendous volume change during cycling, and the 3D NPC@Li anode can efficiently inhibit the growth of lithium dendrites and volume expansion, too. As a result, the cell exhibits a high reversible capacity of 1383 mAh g?1 at 0.5 C (the current density of 837 mA g?1), superior rate ability (the reversible capacity of 735 mAh g?1 at the extremely high current density of 16 750 mA g?1) with excellent coulombic efficiency of about 100% and an excellent cycle life over 500 cycles with only about 0.026% capacity loss per cycle.  相似文献   

10.
Molybdenum ditelluride nanosheets encapsulated in few‐layer graphene (MoTe2/FLG) are synthesized by a simple heating method using Te and Mo powder and subsequent ball milling with graphite. The as‐prepared MoTe2/FLG nanocomposites as anode materials for lithium‐ion batteries exhibit excellent electrochemical performance with a highly reversible capacity of 596.5 mAh g?1 at 100 mA g?1, a high rate capability (334.5 mAh g?1 at 2 A g?1), and superior cycling stability (capacity retention of 99.5% over 400 cycles at 0.5 A g?1). Ex situ X‐ray diffraction and transmission electron microscopy are used to explore the lithium storage mechanism of MoTe2. Moreover, the electrochemical performance of a MoTe2/FLG//0.35Li2MnO3·0.65LiMn0.5Ni0.5O2 full cell is investigated, which displays a reversible capacity of 499 mAh g?1 (based on the MoTe2/FLG mass) at 100 mA g?1 and a capacity retention of 78% over 50 cycles, suggesting the promising application of MoTe2/FLG for lithium‐ion storage. First‐principles calculations exhibit that the lowest diffusion barrier (0.18 eV) for lithium ions along pathway III in the MoTe2 layered structure is beneficial for improving the Li intercalation/deintercalation property.  相似文献   

11.
Storing more energy in a limited device area is very challenging but crucial for the applications of flexible and wearable electronics. Metal vanadates have been regarded as a fascinating group of materials in many areas, especially in lithium‐ion storage. However, there has not been a versatile strategy to synthesize flexible metal vanadate hybrid nanostructures as binder‐free anodes for Li‐ion batteries so far. A convenient and versatile synthesis of MxVyOx+2.5y@carbon cloth (M = Mn, Co, Ni, Cu) composites is proposed here based on a two‐step hydrothermal route. As‐synthesized products demonstrate hierarchical proliferous structure, ranging from nanoparticles (0D), and nanobelts (1D) to a 3D interconnected network. The metal vanadate/carbon hybrid nanostructures exhibit excellent lithium storage capability, with a high areal specific capacity up to 5.9 mAh cm?2 (which equals to 1676.8 mAh g?1) at a current density of 200 mA g?1. Moreover, the nature of good flexibility, mixed valence states, and ultrahigh mass loading density (over 3.5 mg cm?2) all guarantee their great potential in compact energy storage for future wearable devices and other related applications.  相似文献   

12.
Rational surface engineering of 2D nanoarchitectures‐based electrode materials is crucial as it may enable fast ion transport, abundant‐surface‐controlled energy storage, long‐term structural integrity, and high‐rate cycling performance. Here we developed the stacked ultrathin Co3O4 nanosheets with surface functionalization (SUCNs‐SF) converted from layered hydroxides with inheritance of included anion groups (OH?, NO3?, CO32?). Such stacked structure establishes 2D nanofluidic channels offering extra lithium storage sites, accelerated Li‐ion transport, and sufficient buffering space for volume change during electrochemical processes. Tested as an anode material, this unique nanoarchitecture delivers high specific capacity (1230 and 1011 mAh g?1 at 0.2 and 1 A g?1, respectively), excellent rate performance, and long cycle capability (1500 cycles at 5 A g?1). The demonstrated advantageous features by constructing 2D nanochannels in nonlayered materials may open up possibilities for designing high‐power lithium ion batteries.  相似文献   

13.
1T phase MoS2 possesses higher conductivity than the 2H phase, which is a key parameter of electrochemical performance for lithium ion batteries (LIBs). Herein, a 1T‐MoS2/C hybrid is successfully synthesized through facile hydrothermal method with a proper glucose additive. The synthesized hybrid material is composed of smaller and fewer‐layer 1T‐MoS2 nanosheets covered by thin carbon layers with an enlarged interlayer spacing of 0.94 nm. When it is used as an anode material for LIBs, the enlarged interlayer spacing facilitates rapid intercalating and deintercalating of lithium ions and accommodates volume change during cycling. The high intrinsic conductivity of 1T‐MoS2 also contributes to a faster transfer of lithium ions and electrons. Moreover, much smaller and fewer‐layer nanosheets can shorten the diffusion path of lithium ions and accelerate reaction kinetics, leading to an improved electrochemical performance. It delivers a high initial capacity of 920.6 mAh g?1 at 1 A g?1 and the capacity can maintain 870 mAh g?1 even after 300 cycles, showing a superior cycling stability. The electrode presents a high rate performance as well with a reversible capacity of 600 mAh g?1 at 10 A g?1. These results show that the 1T‐MoS2/C hybrid shows potential for use in high‐performance lithium‐ion batteries.  相似文献   

14.
The electrochemical behaviors of current graphitic carbons are seriously restricted by its low surface area and insufficient interlayer spacing for sodium‐ion batteries. Here, sulfur‐doped graphitic carbon nanosheets are reported by utilizing sodium dodecyl sulfate as sulfur resource and graphitization additive, showing a controllable interlayer spacing range from 0.38 to 0.41 nm and a high specific surface area up to 898.8 m2 g?1. The obtained carbon exhibits an extraordinary electrochemical activity for sodium‐ion storage with a large reversible capacity of 321.8 mAh g?1 at 100 mA g?1, which can be mainly attributed to the expanded interlayer spacing of the carbon materials resulted from the S‐doping. Impressively, superior rate capability of 161.8 mAh g?1 is reserved at a high current density of 5 A g?1 within 5000 cycles, which should be ascribed to the fast surface‐induced capacitive behavior derived from its high surface area. Furthermore, the storage processes are also quantitatively evaluated, confirming a mixed storage mechanism of diffusion‐controlled intercalation behavior and surface‐induced capacitive behavior. This study provides a novel route for rationally designing various carbon‐based anodes with enhanced rate capability.  相似文献   

15.
Recently, binary ZnCo2O4 has drawn enormous attention for lithium‐ion batteries (LIBs) as attractive anode owing to its large theoretical capacity and good environmental benignity. However, the modest electrical conductivity and serious volumetric effect/particle agglomeration over cycling hinder its extensive applications. To address the concerns, herein, a rapid laser‐irradiation methodology is firstly devised toward efficient synthesis of oxygen‐vacancy abundant nano‐ZnCo2O4/porous reduced graphene oxide (rGO) hybrids as anodes for LIBs. The synergistic contributions from nano‐dimensional ZnCo2O4 with rich oxygen vacancies and flexible rGO guarantee abundant active sites, fast electron/ion transport, and robust structural stability, and inhibit the agglomeration of nanoscale ZnCo2O4, favoring for superb electrochemical lithium‐storage performance. More encouragingly, the optimal L‐ZCO@rGO‐30 anode exhibits a large reversible capacity of ≈1053 mAh g?1 at 0.05 A g?1, excellent cycling stability (≈746 mAh g?1 at 1.0 A g?1 after 250 cycles), and preeminent rate capability (≈686 mAh g?1 at 3.2 A g?1). Further kinetic analysis corroborates that the capacitive‐controlled process dominates the involved electrochemical reactions of hybrid anodes. More significantly, this rational design holds the promise of being extended for smart fabrication of other oxygen‐vacancy abundant metal oxide/porous rGO hybrids toward advanced LIBs and beyond.  相似文献   

16.
Currently, the specific capacity and cycling performance of various MoS2/carbon‐based anode materials for Na‐ion storage are far from satisfactory due to the insufficient structural stability of the electrode, incomplete protection of MoS2 by carbon, difficult access of electrolyte to the electrode interior, as well as inactivity of the adopted carbon matrix. To address these issues, this work presents the rational design and synthesis of 3D interconnected and hollow nanocables composed of multiwalled carbon@MoS2@carbon. In this architecture, (i) the 3D nanoweb‐like structure brings about excellent mechanical property of the electrode, (ii) the ultrathin MoS2 nanosheets are sandwiched between and doubly protected by two layers of porous carbon, (iii) the hollow structure of the primary nanofibers facilitates the access of electrolyte to the electrode interior, (iv) the porous and nitrogen‐doping properties of the two carbon materials lead to synergistic Na‐storage of carbon and MoS2. As a result, this hybrid material as the anode material of Na‐ion battery exhibits fast charge‐transfer reaction, high utilization efficiency, and ultrastability. Outstanding reversible capacity (1045 mAh g?1), excellent rate behavior (817 mAh g?1 at 7000 mA g?1), and good cycling performance (747 mAh g?1 after 200 cycles at 700 mA g?1) are obtained.  相似文献   

17.
MoS2 nanosheets as a promising 2D nanomaterial have extensive applications in energy storage and conversion, but their electrochemical performance is still unsatisfactory as an anode for efficient Li+/Na+ storage. In this work, the design and synthesis of vertically grown MoS2 nanosheet arrays, decorated with graphite carbon and Fe2O3 nanoparticles, on flexible carbon fiber cloth (denoted as Fe2O3@C@MoS2/CFC) is reported. When evaluated as an anode for lithium‐ion batteries, the Fe2O3@C@MoS2/CFC electrode manifests an outstanding electrochemical performance with a high discharge capacity of 1541.2 mAh g?1 at 0.1 A g?1 and a good capacity retention of 80.1% at 1.0 A g?1 after 500 cycles. As for sodium‐ion batteries, it retains a high reversible capacity of 889.4 mAh g?1 at 0.5 A g?1 over 200 cycles. The superior electrochemical performance mainly results from the unique 3D ordered Fe2O3@C@MoS2 array‐type nanostructures and the synergistic effect between the C@MoS2 nanosheet arrays and Fe2O3 nanoparticles. The Fe2O3 nanoparticles act as spacers to steady the structure, and the graphite carbon could be incorporated into MoS2 nanosheets to improve the conductivity of the whole electrode and strengthen the integration of MoS2 nanosheets and CFC by the adhesive role, together ensuring high conductivity and mechanical stability.  相似文献   

18.
A self‐assembled 3D foam‐like NiCo2O4 catalyst has been synthesized via a simple and environmental friendly approach, wherein starch acts as the template to form the unique 3D architecture. Interestingly, when employed as a cathode for lithium oxygen batteries, it demonstrates superior bifunctional electrocatalytic activities toward both the oxygen reduction reaction and the oxygen evolution reaction, with a relatively high round‐trip efficiency of 70% and high discharge capacity of 10 137 mAh g?1 at a current density of 200 mA g?1, which is much higher than those in previously reported results. Meanwhile, rotating disk electrode measurements in both aqueous and nonaqueous electrolyte are also employed to confirm the electrocatalytic activity for the first time. This excellent performance is attributed to the synergistic benefits of the unique 3D foam‐like structure and the intrinsically high catalytic activity of NiCo2O4.  相似文献   

19.
Ternary transition metal oxides (TMOs) are highly potential electrode materials for lithium ion batteries (LIBs) due to abundant defects and synergistic effects with various metal elements in a single structure. However, low electronic/ionic conductivity and severe volume change hamper their practical application for lithium storage. Herein, nanosheet‐assembled hollow single‐hole Ni–Co–Mn oxide (NHSNCM) spheres with oxygen vacancies can be obtained through a facile hydrothermal reaction, which makes both ends of each nanosheet exposed to sufficient free space for volume variation, electrolyte for extra active surface area, and dual ion diffusion paths compared with airtight hollow structures. Furthermore, oxygen vacancies could improve ion/electronic transport and ion insertion/extraction process of NHSNCM spheres. Thus, oxygen‐vacancy‐rich NHSNCM spheres embedded into a 3D porous carbon nanotube/graphene network as the anode film ensure efficient electrolyte infiltration into both the exterior and interior of porous and open spheres for a high utilization of the active material, showing an excellent electrochemical performance for LIBs (1595 mAh g?1 over 300 cycles at 2 A g?1, 441.6 mAh g?1 over 4000 cycles at 10 A g?1). Besides, this straightforward synthetic method opens an efficacious avenue for the construction of various nanosheet‐assembled hollow single‐hole TMO spheres for potential applications.  相似文献   

20.
Improved thin‐film microbatteries are needed to provide appropriate energy‐storage options to power the multitude of devices that will bring the proposed “Internet of Things” network to fruition (e.g., active radio‐frequency identification tags and microcontrollers for wearable and implantable devices). Although impressive efforts have been made to improve the energy density of 3D microbatteries, they have all used low energy‐density lithium‐ion chemistries, which present a fundamental barrier to miniaturization. In addition, they require complicated microfabrication processes that hinder cost‐competitiveness. Here, inkjet‐printed lithium–sulfur (Li–S) cathodes for integrated nanomanufacturing are reported. Single‐wall carbon nanotubes infused with electronically conductive straight‐chain sulfur (S@SWNT) are adopted as an integrated current‐collector/active‐material composite, and inkjet printing as a top‐down approach to achieve thin‐film shape control over printed electrode dimensions is used. The novel Li–S cathodes may be directly printed on traditional microelectronic semicoductor substrates (e.g., SiO2) or on flexible aluminum foil. Profilometry indicates that these microelectrodes are less than 10 µm thick, while cyclic voltammetry analyses show that the S@SWNT possesses pseudocapacitive characteristics and corroborates a previous study suggesting the S@SWNT discharge via a purely solid‐state mechanism. The printed electrodes produce ≈800 mAh g?1 S initially and ≈700 mAh g?1 after 100 charge/discharge cycles at C/2 rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号