首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The colour, textural profile and heterocyclic aromatic amines content of lamb patties cooked by charcoal grilling, infrared grilling and superheated steam roasting were investigated. The results of colour showed that lightness and yellowness values were highest in the superheated steam and lowest in charcoal grilled patties. The texture characteristics observed in the superheated steam, and infrared patties were much better. Water loss was highest in charcoal grilled meat. Charcoal grilling produced a significantly (< 0.05) much higher amount of total HAAs, ranging from 171.26 ng g−1 to 555.29 ng g−1 (polar) and from 200.77 ng g−1 to 426.07 ng g−1 (non-polar) HAAs, than infrared (39.21 ng g−1 −181.37 ng g−1) and (52.84 ng g−1 −148.59 ng g−1) and superheated steam roasting (from 8.67 ng g−1 to 30.66 ng g−1 and from 23.61 ng g−1 to 89.66 ng g−1) for both types of HAAs in lamb patties. Colour, texture and HAAs were significantly influenced by time and by the temperature used for each cooking method.  相似文献   

2.
The effects of fat content and charcoal types on the formation of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HAAs) in various barbecued fish (trout, sea bream, seabass, salmon and shad) were investigated. Fish samples were also analysed in terms of fat content and fatty acid profile. Total saturated fatty acids (∑SFA) contents reduced while the total polyunsaturated fatty acids (∑PUFA) contents increased after barbecuing. Both fat content and charcoal type had an effect on the amount of PAHs and HAAs. The amounts of ∑PAHs ranged between 6.95 and 99.03 ng g−1 in barbecued fish. Notably, the highest amount of ∑PAHs was found in shad as well. The amounts of ∑HAAs ranged from non-detectable levels to 2.29 ng g−1. The amounts of ∑PAHs and ∑HAAs were higher in samples barbecued with charcoal briquette compared to those barbecued with wood charcoal. Hence, we would suggest the use of wood charcoal in barbecuing.  相似文献   

3.
Aminoazaarenes (heterocyclic amines, HAs) contents were investigated in pan-fried pork meat as well as in gravies generated during frying. The clean-up procedure included alkaline hydrolysis, tandem solid phase extraction on columns filled with Extrelut – diatomaceous earth, cation exchanger (propyl sulfonic acid) and chemically bounded phase – C18. Identification and quantitative analysis of HAs fraction was carried out using a HPLC system with DAD-type detector. Separation was achieved by using TSK-gel ODS 80-TM column and a mixture of 5% acetonitrile and 95% triethylamine phosphate buffer (pH 3.3) as a mobile phase. Six compounds were determined: 2-amino-1,6-dimethylimidazo[4,5-b]pyridine (DMIP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (8-MeIQx), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP). Two types of dishes prepared at home according to common recipes used in Poland were investigated. The total content of aminoazaarenes determined in collar was 7.2 and in chop samples 18.0 ng g−1 of cooked meat. The total contents of investigated HAs in gravy samples were 10.2 and 15.1 ng g−1 of cooked meat for collars and chops, respectively.  相似文献   

4.
The study was carried out to determine the effect of cooking method on Heterocyclic Aromatic Amines (HAs) concentration in grilled chicken and beef (satay). Six common HAs were investigated: 2-amino-3-methylimidazo[4,5-f]quinolone (IQ), 2amino 3,4dimethylimidazo [4,5f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8 trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), 2-amino-3,7,8trimethylimidazo [4,5-f]quinoxaline (7,8-DiMeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Chicken and beef satay samples were grilled to medium and well done level of doneness. Charcoal grilled (treatment A), microwave pre-treatment prior to grilling (treatment B), and microwave-deep fried (treatment C) were applied to beef and chicken satay samples. The satay samples which were microwaved prior to grilling (B) showed significantly (p < 0.05) lower HAs concentration as compared to those charcoal grilled (A). Both medium and well done cooked beef and chicken satay samples that were microwaved and deep fried (C) as an alternative method to grilling were proven to produce significantly lesser HAs as compared to charcoal-grilled (A) and microwaved prior to grilling (B).  相似文献   

5.
Heterocyclic aromatic amines (HAAs) are potent mutagens and carcinogens generated during the heat processing of meat. HAAs, which are abundant in processed meat products, include 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), and 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP). The content of these three HAAs in fried pork was determined by LC-MS/MS. The effects of frying time and temperature, sample shape, and addition of antioxidants on the generation of HAAs were investigated. The results show that HAAs were produced during frying, and their levels increased with increasing frying time and temperature. Pork patties had the highest concentration of HAAs compared with pork meatballs and pork strips. The addition of antioxidant of bamboo leaves (AOB), liquorice extract, tea polyphenol, phytic acid and sodium iso-ascorbate to pork before frying had an inhibitory effect on HAA generation, with AOB being the most effective antioxidant. Inhibition levels of nearly 69.73% for MeIQx, 53.59% for 4,8-DiMeIQx and 77.07% for PhIP in fried pork were achieved when the concentrations of AOB added were 0.02, 0.01 and 0.10 g kg?1, respectively.  相似文献   

6.
Heterocyclic aromatic amines (HAAs) are formed in protein-rich foods during high temperature cooking such as frying and grilling. Since most HAAs are potent mutagens and almost all are carcinogenic to laboratory animals, their formation in cooked foods is a health concern. In the present study, 31 cooked hamburgers and six chicken preparations were obtained from various fast food outlets in the Ottawa area and analyzed for HAAs. In the developed procedure, ground-up samples were extracted under both acidic and alkaline conditions, cleaned on SPE cartridges, and the concentrations of various HAAs determined using electrospray ionization LC/MS/MS. Deuterium-labelled internal standards of the three most commonly found HAAs (IQ, MeIQx, and PhIP) in such foods were used for quantitation and recovery correction. Varying levels of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) (0.2–6 μg/kg), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) (0.1–3.5 μg/kg), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (0.3–6.9 μg/kg), and 7,8-dimethyl-IQx (2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline) (0.1–2.9 μg/kg) were detected in most hamburgers, whereas our limited data on the chicken samples (wings, drumsticks, and nuggets) indicated the presence of mainly PhIP (0.1–2.1 μg/kg) and MeIQx (0.1–1.8 μg/kg). Traces of 4,7,8-trimethyl-IQx (<0.1 μg/kg), 3-amino-1,4-dimethyl-5H-pyrido[3,4-b]indole (Trp-P-1) (<0.1–0.3 μg/kg), and 3-amino-1-methyl-5H-pyrido[3,4-b]indole (Trp-P-2) (<0.1–0.8 μg/kg) were also detected in some samples of hamburgers but not in any of the chicken analyzed thus far. Since hamburger is a popular meal among Canadians, regular consumption of such items may contribute substantially to one's dietary intake of HAAs.  相似文献   

7.
Heterocyclic amines (HAs), which form in meats during heating and cooking, are recognized as mutagenic and carcinogenic compounds. In this study, 13 HAs and 2 β-carbolines (BCs) were analyzed in cooked Korean meat products, including griddled bacon, griddled pork loin, boiled pork loin, boiled chicken meat, chicken meat stock, chicken breast for salad and chicken patty. The samples were either cooked in the laboratory or purchased from local fast-food restaurants. The HAs and BCs in the samples were separated using solid-phase extraction and were analyzed by high performance liquid chromatography–mass spectrometry (HPLC–MS). The most frequently detected HAs and BCs in the cooked meats were harman (1-methyl-9H pyrido[4,3-b]indole; 990.9 ng g?1), norharman (9H-pyrido[4,3-b]indole; 412.7 ng g?1) and PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine; 258.2 ng g?1). The griddled pork loin and bacon contained higher levels of norharman, harman and PhIP than the other cooked meats. PhIP, which is classified as a Group 2B carcinogen by the International Agency for Research on Cancer, had levels of 258.2 and 168.2 ng g?1 in the griddled pork loin and griddled bacon, respectively. The griddled bacon was the only sample containing TriMeIQx (2-amino-3,4,7,8-tetramethylimidazo[4,5-f]quinoxaline; 79.9 ng g?1). IQ (2-amino-3-methyl imidazo[4,5-f]quinoline), 7,8-DiMeIQx (2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline), 4,8-DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline) and AαC (2-amino-9H-pyrido[2,3-b]indole) were detected at trace levels in all samples.  相似文献   

8.
T. Polak  B. ?lender 《LWT》2009,42(1):256-2016
The mutagenic heterocyclic amines (HAs) originate in processed proteinaceous food. The effects of ageing (non-aged - i.e. 24 h post mortem vs. 14 and 28 days post mortem kept at 1 °C) and final internal temperature on cooking (Ti, 65 and 80 °C) on the content of HAs in grilled steaks (two-plated grill, temperature of 220 °C) were studied. HA precursors (creatine, creatinine, and free amino acids) and ageing indicators, such as instrumentally measured colour values, pHultimate values and length of myofibrilar fragments on raw and cutting values on grilled beef Longissimus dorsi muscles were determined. The muscles originated from eight commercially slaughtered Simmental bulls, 19-20 months old. The content of HAs was determined by a solid-phase extraction procedure. Meat ageing is accompanied by large changes in the chemical composition and structure of muscle tissues. In general, all the ageing indicators and precursors of HAs were influenced by ageing time at the 5% level or less. Creatine content declined significantly (non-aged: 6.00 mg g−1, 14 days: 5.82 mg g−1, and 28 days: 5.55 mg g−1) and creatinine increased with days of ageing (non-aged: 0.19 mg g−1, 14 days: 0.24 mg g−1, and 28 days: 0.26 mg g−1). Higher contents of total free amino acids were determined after 14 and 28 days of storage (28.18 μmol g−1 and 37.59 μmol g−1) than in non-aged beef (19.00 μmol g−1). In this study, two HAs were determined: MeIQx (2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline) and PhIP (2—amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine). The content of HAs increases with ageing. At lower Ti, more MeIQx was formed; at higher Ti, more PhIP was formed. MeIQx was present in all samples while PhIP was found only in samples grilled to higher Ti. Samples treated to Ti = 80 °C generally contained less HAs (non-aged meat: 0.20 ng g−1, 14 days: 0.26 ng g−1, and 28 days: 0.28 ng g−1) than samples treated to Ti = 65 °C (non-aged meat: 0.19 ng g−1, 14 days: 0.36 ng g−1, and 28 days: 0.39 ng g−1) on account of MeIQx thermolability.  相似文献   

9.
Herein, the effects of tarragon on lipid oxidation and heterocyclic aromatic amines (HAAs) formation in meatballs were determined. A significant (P < 0.05) reduction in pH and TBARS values of the meatballs with tarragon was determined, while no significant effect (P > 0.05) was observed regarding water content of the samples. Only 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) compound (up to 0.06 ng g−1) was detected in the control group meatballs. On the other hand, in the meatballs with tarragon, no HAAs could be detected. Tarragon use completely inhibited the formation of MeIQ. The total HAA content of the samples in the control group increased with increasing the cooking temperature. The total HAA contents of the control group meatballs changed between not detected and 0.06 ng g−1. In conclusion, it can be recommended to use tarragon in meatball production as it completely inhibits the HAA formation and reduces TBARS value compared to the control group meatballs.  相似文献   

10.
 This report describes two studies which compared the results of the analyses of four heterocyclic aromatic amines (HAAs): 2-amino-3-methylinidazo[4,5-f]quinoline (IQ); 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx); 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), first as pure methanolic solutions and, in a second step, in a food matrice (beef extract) spiked with known amounts of these four HAAs. Details are given for the preparation of the methanolic solutions of the four HAAs and for the homogeneity and stability studies. The results of different statistical treatments revealed no significant heterogeneity within or between ampoules. The results of the stability studies clearly indicated that, except for PhIP, no effect of storage period (up to 6 months) or storage temperature (up to 25  °C), existed for the five HAAs methanolic solutions. Each of the eight European participating laboratories, which has leading experience in the analysis of HAAs, received sealed ampoules containing the pure reference solutions of the four HAAs together with a mixture of unknown identity and concentration. For the analysis of the unknwon sample, participants followed, a common work programme, but used different columns, solvent gradients and detection systems (UV, fluorescence, mass spectrometry and electrochemical detection. The analysis of the results of this first comparison revealed a good correlation between the results provided by the participants and high precision regarding the target values, independent of the experimental conditions used. For the second comparison, a common batch of commercial beef extract was prepared and spiked with known amounts of the four HAAs. The long-term stability study at –18  °C, 4  °C, 25  °C, 40  °C and 60  °C revealed high stability of these four HAAs, during up to 6 months of storage. At 40  °C and 60  °C, however, a significant loss was observed, in particular for PhIP. On the other hand, the 1-year stability study revealed that the HAAs content did not change when beef extract was stored at –18  °C. Details of these homogeneity and stability studies are provided. The sealed ampoules containing beef extract, together with the reference methanolic solutions were sent to the participants in refrigerated container. The eight European laboratories, which participated in the first comparision, adopted the work programme of this exercise. They generally followed a previously agreed upon solid-phase extraction procedure, very similar to that described by Gross [8], with analysis by HPLC. Column conditions, solvent elution and detection by UV, fluorescence, mass spectrometry and electrochemical detection varied between laboratories. The objectives of this second phase of the project were to compare and improve usual routine laboratory methods for the determination of IQ, MeIQx, 4,8-DiMeIQx and PhIP in the range of 1–30 ng/g, in a commercial beef extract. The comparision of the results revealed, however, large variations, not only beween but also within laboratories. Major difficulties were encountered by the participants, mainly for the determination of PhIP. Acceptable recovery levels were agreed between participants and different sources of variability in the extraction procedures were identified. In conclusion, whereas the analytical determination of HAAs in beef extract appeared to be satisfactory, the procedures of isolation and purification require further improvement. Received: 23 April 1998  相似文献   

11.
 This report describes two studies which compared the results of the analyses of four heterocyclic aromatic amines (HAAs): 2-amino-3-methylinidazo[4,5-f]quinoline (IQ); 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx); 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), first as pure methanolic solutions and, in a second step, in a food matrice (beef extract) spiked with known amounts of these four HAAs. Details are given for the preparation of the methanolic solutions of the four HAAs and for the homogeneity and stability studies. The results of different statistical treatments revealed no significant heterogeneity within or between ampoules. The results of the stability studies clearly indicated that, except for PhIP, no effect of storage period (up to 6 months) or storage temperature (up to 25  °C), existed for the five HAAs methanolic solutions. Each of the eight European participating laboratories, which has leading experience in the analysis of HAAs, received sealed ampoules containing the pure reference solutions of the four HAAs together with a mixture of unknown identity and concentration. For the analysis of the unknwon sample, participants followed, a common work programme, but used different columns, solvent gradients and detection systems (UV, fluorescence, mass spectrometry and electrochemical detection. The analysis of the results of this first comparison revealed a good correlation between the results provided by the participants and high precision regarding the target values, independent of the experimental conditions used. For the second comparison, a common batch of commercial beef extract was prepared and spiked with known amounts of the four HAAs. The long-term stability study at –18  °C, 4  °C, 25  °C, 40  °C and 60  °C revealed high stability of these four HAAs, during up to 6 months of storage. At 40  °C and 60  °C, however, a significant loss was observed, in particular for PhIP. On the other hand, the 1-year stability study revealed that the HAAs content did not change when beef extract was stored at –18  °C. Details of these homogeneity and stability studies are provided. The sealed ampoules containing beef extract, together with the reference methanolic solutions were sent to the participants in refrigerated container. The eight European laboratories, which participated in the first comparision, adopted the work programme of this exercise. They generally followed a previously agreed upon solid-phase extraction procedure, very similar to that described by Gross [8], with analysis by HPLC. Column conditions, solvent elution and detection by UV, fluorescence, mass spectrometry and electrochemical detection varied between laboratories. The objectives of this second phase of the project were to compare and improve usual routine laboratory methods for the determination of IQ, MeIQx, 4,8-DiMeIQx and PhIP in the range of 1–30 ng/g, in a commercial beef extract. The comparision of the results revealed, however, large variations, not only beween but also within laboratories. Major difficulties were encountered by the participants, mainly for the determination of PhIP. Acceptable recovery levels were agreed between participants and different sources of variability in the extraction procedures were identified. In conclusion, whereas the analytical determination of HAAs in beef extract appeared to be satisfactory, the procedures of isolation and purification require further improvement. Received: 23 April 1998  相似文献   

12.
 Levels of known heterocyclic amines vary from undetectable in many meats sold in fast food restaurants, to over 10 ng/g for meats prepared in restaurants that cook food to order, to hundreds of nanograms per gram for some meats cooked under certain home or laboratory conditions. To simulate the dry reactions that seem to occur at the meat surface we developed a model system to mimic these processes. Mixtures of free amino acids, creatinine and glucose, simulating the composition of beef or chicken, heated at 200  °C, form eight heterocyclic amines. Besides the commonly found 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-amino-3-methylimidazo[4,5-f]quinoline, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 2-amino-1,6-dimethylimidazo[4,5-b]pyridine, 2-amino-1,5,6-trimethylimidazo[4,5-b]pyridine and 2-amino-1,6-dimethylfuro[3,2-e]imidazo[4,5-b]pyridine were also found. The calculated risk of consumption of heterocyclic amines is determined by the dietary dose, the extrapolation of carcinogenic potencies from rodents to humans, and the extrapolation of high rodent doses to low human exposures. Results suggest that DNA binding is linear with dose, but that the human DNA forms more adducts per unit dose than that of the rat. Altogether, the risk appears to be equivalent to that for many carcinogens that are regulated. Received: 23 April 1998  相似文献   

13.
 Levels of known heterocyclic amines vary from undetectable in many meats sold in fast food restaurants, to over 10 ng/g for meats prepared in restaurants that cook food to order, to hundreds of nanograms per gram for some meats cooked under certain home or laboratory conditions. To simulate the dry reactions that seem to occur at the meat surface we developed a model system to mimic these processes. Mixtures of free amino acids, creatinine and glucose, simulating the composition of beef or chicken, heated at 200  °C, form eight heterocyclic amines. Besides the commonly found 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-amino-3-methylimidazo[4,5-f]quinoline, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 2-amino-1,6-dimethylimidazo[4,5-b]pyridine, 2-amino-1,5,6-trimethylimidazo[4,5-b]pyridine and 2-amino-1,6-dimethylfuro[3,2-e]imidazo[4,5-b]pyridine were also found. The calculated risk of consumption of heterocyclic amines is determined by the dietary dose, the extrapolation of carcinogenic potencies from rodents to humans, and the extrapolation of high rodent doses to low human exposures. Results suggest that DNA binding is linear with dose, but that the human DNA forms more adducts per unit dose than that of the rat. Altogether, the risk appears to be equivalent to that for many carcinogens that are regulated. Received: 23 April 1998  相似文献   

14.
Heterocyclic aromatic amines (HAAs) are sometimes formed in meats and fish cooked at high temperatures. In the present study, the effects of cooking methods by deep-fat frying, pan-frying, grilling and barbecuing on the formation of HAAs of fillets of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta fario) were investigated. Barbecued brown trout (1 g) was estimated to contain 0.12 ng of IQ (2-amino-3-methylimidazo[4,5-f]quinoline), 0.02 ng 4,8-DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline). Grilled rainbow trout (1 g) was estimated to contain 0.02 ng 4,8-DiMeIQx. MeIQ (2-amino-3,4-dimethylimidazo[4,5-f]quinoline), MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline) and PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) were not detectable in all cooked fish.  相似文献   

15.
The intake of heterocyclic amines is influenced by the amount and type of meat and fish ingested, frequency of consumption, cooking methods, cooking temperature, and duration of cooking. In this study, the dietary intake of heterocyclic amines in Malaysia and their main sources were investigated. Forty-two samples of meat and fish were analysed by high-performance liquid chromatography with photodiode array detector to determine the concentration of the six predominant heterocyclic amines, namely: 2-amino-3-methylimidazo[4,5-f] quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f] quinoline(MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f] quinoxaline (4,8-DiMeIQx), 2-amino-3,7,8-trimethylimidazo[4,5-f] quinoxaline (7,8-DiMeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Dietary intake data were obtained using a food-frequency questionnaire when interviewing 600 Malaysian respondents. The level of total heterocyclic amines in food samples studies ranged from not detected to 38.7 ng g?1. The average daily intake level of heterocyclic amine was 553.7 ng per capita day?1. The intake of PhIP was the highest, followed by MeIQx and MeIQ. The results reveal that fried and grilled chicken were the major dietary source of heterocyclic amines in Malaysia. However, the heterocyclic amine intake by the Malaysian population was lower than those reported from other regions.  相似文献   

16.
In this study, sugar cane fibre (SCF) partially replaced meat in beef burger formulations. The effects of SCF on cook yield, dimensional changes, sensory characteristics of beef burgers and in vitro gut fermentation characteristics were evaluated. Replacing beef with 1 to 5% SCF in burgers significantly increased cook yields from 13.8 ± 0.3 to 59.1 ± 0.3% due to its high water-binding capacity of 5.89 ± 0.08 g g−1 and oil-binding capacity of 4.68 ± 0.03 g g−1. The inclusion of SCF improved cooking properties whilst improving sensory characteristics. Burgers with 1% SCF had the highest overall acceptability. SCF was steadily fermented with a porcine faecal inoculum for up to 72 h, producing short-chain fatty acids. The characteristics of high water/oil binding and fermentability suggest that SCF has the potential to provide a range of dietary fibre benefits, and therefore deserves further study.  相似文献   

17.
Heterocyclic amines (HCAs), potent mutagens and a risk factor for human cancers, are produced in meats cooked at high temperature. The aim of this study was to determine the HCA content in cooked meat products (beef, chicken, pork, fish) prepared by various cooking methods (pan frying, oven broiling, and oven baking at 170 to 230 °C) that are preferred by U.S. meat consumers. The primary HCAs in these samples were PhIP (2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine) (1.49-10.89 ng/g), MeIQx (2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline) (not detected-4.0 ng/g), and DiMeIQx (2-amino-3,4,8-trimethyl-imidazo [4,5-f]quinoxaline) (not detected-3.57 ng/g). Type and content of HCAs in cooked meat samples were highly dependent on cooking conditions. The total HCA content in well-done meat was 3.5 times higher than that of medium-rare meat. Fried pork (13.91 ng/g) had higher levels of total HCAs than fried beef (8.92 ng/g) and fried chicken (7.00 ng/g). Among the samples, fried bacon contained the highest total HCA content (17.59 ng/g).  相似文献   

18.
前体物含量对杂环胺形成的影响   总被引:2,自引:0,他引:2  
将牛、猪、羊、鸡、鸭和鹅肉分别在200℃下煎烤10 min,分析其原料肉中前体物的含量与加工肉制品中杂环胺的形成量,以探讨不同动物原料肉中杂环胺的形成量及原料肉中前体物的含量对杂环胺形成的影响。结果表明,6种原料肉中前体物含量差异较大,肌酸与葡萄糖的摩尔浓度比在0.89~9.84之间。加工肉制品中共检测出10种杂环胺,其中9H-吡啶并[3,4-b]吲哚(Norharman)与1-甲基-9H-吡啶并[3,4-b]吲哚(Harman)在加工肉品中含量最高,分别在10.90~24.16 ng/g与4.64~14.04 ng/g之间。而2-氨基-3,8-二甲基咪唑并[4,5-f]喹喔啉(MeIQx)在牛肉中形成量较高,达3.55 ng/g,2-氨基-1-甲基-6-苯基-咪唑并[4,5-b]吡啶(PhIP)在禽肉中易于产生,其中鸡肉中含量最高,达15.26 ng/g。PhIP与肌酸和葡萄糖的摩尔浓度比存在相关性(P<0.05),随着葡萄糖浓度的增高,PhIP的形成量减少。  相似文献   

19.
The effects of natural food ingredients including Korean bramble, onion, and marinade sauce with water extracts of olive and lotus leaf on the formation of 15 heterocyclic amines (HCAs) were evaluated in fried beef patties and chicken breasts. The patties and chicken breasts containing natural food ingredients were fried at 230 and 200°C for 8 min on each side. Addition of 4 g Korean bramble to beef patties reduced the formation of 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 9H-pyrido [3,4-b]indole (Norharman), and 2-amino-6-methyldipyrido [1,2-a:3′,2′-d]imidazole (Glu-P-1) by 74, 62, and 39%, respectively. Also, when 2 g onion was added to beef patties, the formation of 2-amino-3,4,8-trimethylimidazo [4,5-f]quinoxaline (4,8-DiMeIQx), Glu-P-1, MeIQ, Norharman, and 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine (PhIP) was inhibited by 100, 96, 88, 74, and 79%, respectively. When marinade sauce containing 2% water extracts of olive and lotus leaf was added to chicken breasts, most HCAs formation was inhibited. Especially, the formation of Glu-P-1, 2-aminodipyrido [1,2-a:3′,2′-d]imidazole (Glu-P-2), and MeIQ were reduced by 100%.  相似文献   

20.
The effect of cooking temperature and time on amino-imidazo-azaarenes (AIAs) and carbolines in fried ground beef patties and chicken breast under different cooking conditions in Korea was evaluated. Beef patties were fried at different temperatures (150, 180, and 230°C) for 4, 8, 12, and 16 min per each side and then the amount of AIAs and carbolines was evaluated by solid-phase extraction and HPLC-MS analysis. In fried ground beef patties, formations of 9H-pyrido [3,4-b]indole (Norharman) and 1-methyl-9H-pyrido [3,4-b]indole (Harman) were dramatically increased at 230°C for 16 min. Concentrations of Norhanrman and Harman formed at 230°C for 16 min/side were 12 and 40 times greater than level those of Norharman formed at same cooking condition. In fried chicken breasts, 2-amino-3,7,8-trimethylimidazo[4,5-f] quinoxaline (7,8-DiMeIQx) and 2-amino-3,4,7,8-tetramethylimidazo[ 4,5-f]quinoxaline (Tri-MeIQx) were not found at 150 and 180°C. Norhanrman formed at 230°C for 16 min was approximately 4 times higher than fried chicken breasts at 180°C. These results suggest that increase of cooking temperature and time was directly affected on AIAs and carbolines formation in Korean cooked meat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号