首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用包覆的方法模拟可控气氛热复合技术制备了钛/钢双金属复合板,利用光学显微镜观察了结合界面附近的显微组织,借助扫描电镜对拉剪断口进行了分析。结果表明:氩气压力为0.08~0.12MPa,轧制温度为800~850℃,首道次变形率为40%的条件下,钛/钢复合板的拉剪强度不低于为170MPa,同时具备良好的弯曲性能;复合板界面结合良好,无裂纹、气孔等缺陷,界面形成约2μm厚的脆性层,且分布断续;剪切应力作用下,分层和解理是其主要断裂方式,由此可见,采用可控气氛热复合技术制备钛/钢双金属复合板是可行的,尤其对于薄型复合板,该方法能有效降低界面脆性层的影响,具有明显优势。为进一步提高复合板结合性能,应考虑添加合适的中间层材料或调整轧制工艺加以改善。  相似文献   

2.
通过扫描电子显微镜(SEM)和能谱扫描仪(EDS)等分析方法,结合力学性能试验,研究了TA1/Q235R爆炸焊接复合板的界面组织与力学性能。结果表明:TA1/Q235R在爆炸焊接后形成了规律的波状结合界面以及不均匀的漩涡状组织。漩涡组织主要由TiFe、TiFe2等脆性金属间化合物组成,漩涡组织中裂纹、夹杂物、脆性金属间化合物等缺陷导致界面的破坏易沿波形轨迹发生;钛/钢界面拉伸剪切强度达194 MPa,复合板的最大抗拉强度为440 MPa;拉剪断口表现为以脆性断口为主的混合断裂特征,断口特征表明漩涡组织中金属熔化层对钢侧的结合强度高于钛侧。板材拉伸断口为韧性断口。  相似文献   

3.
对钛钢爆炸复合板进行轧制处理,可以得到较薄较宽的复合板。利用光学显微镜、扫描电子显微镜、透射电子显微镜、X射线衍射仪、拉剪实验研究了不同的轧制参数对钛-钢爆炸轧制复合板界面组织特征和性能的影响。结果表明:降低轧前热处理温度或开轧温度,都会提高复合板的界面结合强度。在轧前热处理过程中,由于铁、碳元素的扩散,在界面上形成Ti C和Ti-Fe金属间化合物,使复合板剪切强度下降。然而,在轧制的过程中,这些界面化合物在轧制压力的作用下被压碎,呈弥散分布,阻止界面裂纹的扩展,界面结合强度有所提高,因此,增加轧制压下量可以提高界面的结合性能。  相似文献   

4.
对钛钢爆炸复合板进行轧制处理,可以得到较薄较宽的复合板。利用光学显微镜、扫描电子显微镜、透射电子显微镜、X射线衍射仪、拉剪实验研究了不同的轧制参数对钛-钢爆炸轧制复合板界面组织特征和性能的影响。结果表明:降低轧前热处理温度或开轧温度,都会提高复合板的界面结合强度。在轧前热处理过程中,由于铁、碳元素的扩散,在界面上形成Ti C和Ti-Fe金属间化合物,使复合板剪切强度下降。然而,在轧制的过程中,这些界面化合物在轧制压力的作用下被压碎,呈弥散分布,阻止界面裂纹的扩展,界面结合强度有所提高,因此,增加轧制压下量可以提高界面的结合性能。  相似文献   

5.
研究了热加工工艺对钛-钢复合板界面力学性能和显微组织的影响。测试了在A,B,C,D4种温度下热轧复合板界面的力学性能,用金相显微镜及扫描电镜观察了界面显微组织并分析了界面的成分。结果表明,在A,B2种温度下轧制的钛-钢复合板界面机械性能良好,延伸率高,其剪切强度不但可保持坯料原有的水平,甚至还略有增加。在C,D2种温度下轧制的钛-钢复合板界面机械性能相对较低,延伸率较高,但剪切强度要比爆炸复合坯料低,尤其是D加热温度,轧制后界面剪切强度急剧下降。热轧的终轧温度也是影响钛-钢复合板界面结合性能的重要因素。在低于相转变温度的合适温区热轧,且终轧温度合适,获得的钛-钢复合板结合界面无爆炸波纹,没有污染,生产的脆性化合物极细小,组织类同于钛材完全退火的等轴组织。  相似文献   

6.
利用真空热轧复合方法制备了钒中间层钛/钢复合板,采用SEM、EDS和XRD等分析结合界面形貌、元素扩散行为和界面相组成。结果表明:钒中间层钛/钢复合板界面实现了良好的冶金结合。与拉剪强度测试相结合,研究了钒中间层钛/钢复合板结合界面结构与力学性能。结果表明:钒中间层钛/钢复合板剪切强度均优于国家标准(140 MPa)。950℃轧制的复合板界面扩散层厚度大于900℃轧制的复合板扩散层厚度。钒中间层与Ti、Fe元素形成固溶体,有效阻止了金属间化合物TiFe和TiFe_2的产生。900℃轧制的钛钢复合板剪切强度为223 MPa,大于950℃轧制的复合板剪切强度。对剪切断口的分析表明裂纹多沿钒铁固溶体产生并扩展。  相似文献   

7.
新型高性能结构对钛合金、钢过渡连接接头用钛-钢爆炸复合板复合界面的结合性能和致密性的要求越来越高。本文对过渡连接用钛-钢复合板结合界面附近的微观组织、显微硬度及变形特征等分析的结果表明,TA2-Q345界面漩涡区金属的流动状态不同导致形成不同的漩涡形态,金属流动不畅时,漩涡区易于形成缩松类空洞等缺陷,并夹杂有Fe Ti、Fe2Ti等脆性化合物和富余的铁元素,以及大量氧化物;距离结合界面越近,塑性变形越剧烈,波峰处的变形要大于波谷,钢侧变形程度大于钛侧;钢侧漩涡区的硬度最高,波峰处次之,波谷处最小。  相似文献   

8.
为了提高Al-Fe爆炸焊接界面的力学性能,通过在基板上预制燕尾槽的方法获得啮合型结合界面,并系统研究啮合界面的微观结构和力学性能。微观结构观察表明,啮合界面实现了没有孔洞的冶金结合,结合方式为直接结合和熔化区结合。拉伸样品断面表明,在界面附近钢侧为解理断裂而铝侧为延性断裂。拉剪测试结果表明,相比于普通的铝钢爆炸焊接界面,0°和90°啮合界面的剪切强度分别提高11%和14%。随着离界面距离的增加,界面两侧金属显微硬度值逐渐下降。由于存在脆性Fe-Al化合物,在三点弯曲试验中界面出现裂缝。  相似文献   

9.
采用扫描电镜技术观察和分析了爆炸复合铜/钢板浸铝铸件的铝/钢界面组织,用面扫描探明了界面组织中主要成份的分布,结合粉末样品的X射线谱确定了界面组织的相组成,用拉剪方法测得了界面的结合强度。结果表明:爆覆在钢板上的铜全部溶入铝液中,界面上出现了Fe2Al5与FeAl3两层连续的中间化合物;同时界面附近还出现了FeAl3颗粒相,这种颗粒相的形成可能和浸铝用钢板的爆炸焊接组织有关。界面的结合强度为80.5MPa。  相似文献   

10.
表征了钛/钢爆炸焊接复合板的界面组织和剪切性能,研究了爆炸复合过程的界面结合机理。结果表明,在金属板之间形成了波状界面组织,剧烈塑性变形造成钢基体发生明显的塑性流动,并在界面形成连续的漩涡特征。TEM和XRD检测证实界面存在纳米尺度的过渡层,并包含有固溶体组织和少量金属间化合物。波状界面组织改善了复合板沿爆炸方向的界面剪切强度,剪切断口显示漩涡组织发生韧性断裂特征。  相似文献   

11.
带夹层材料的爆炸-轧制钛钢复合板工艺研究   总被引:3,自引:0,他引:3  
为扩大钛-钢复合板的尺寸,采用一种新颖的组料方式,这种方法包括两个主要步骤,首先用爆炸焊接的方式将DT4夹层与钛板结合,然后按照对称方式组坯。研究轧制温度、退火温度对复合板剪切强度的影响。利用扫描电镜、光学显微镜和显微硬度试验机对复合板的微观组织和界面附近硬度进行分析。结果表明:复合板的结合强度取决于轧制温度和轧后退火温度,当轧制温度超过钛的α→β相变温度,并且退火温度超过750℃时,Ti/DT4界面脆性化合物明显增多,剪切强度显著降低;当退火温度超过900℃,Fe在钛中扩散速度快,显微硬度的峰值在钛侧出现;在550~650℃退火,复合板的结合强度略有升高。  相似文献   

12.
采用通过经验公式估算的焊接工艺参数制备了T2紫铜/06Cr19Ni10不锈钢爆炸焊复合板。通过金相显微镜、扫描电子显微镜和能谱扫描仪等分析方法并结合力学性能试验,研究了爆炸焊复合板的界面组织与性能。研究发现紫铜与不锈钢爆炸焊后形成了规律的波状界面,界面主要为固相结合,波峰与波谷区域分别嵌入了不连续的漩涡状铸态组织,该组织主要由ε-Cu,γ-Fe及不锈钢微粒组成;爆炸焊后,界面附近不锈钢组织中形成了绝热剪切带,奥氏体不锈钢发生了马氏体转变。紫铜组织中能够观察到退火和再结晶现象;界面的结合强度达280.3 MPa,且界面附近组织的显微硬度明显得到了提高;复合板的最大抗拉强度为561 MPa,界面结合区断口观察到混合断裂特征,而漩涡状铸态组织的存在未对拉伸断裂失效产生明显的影响。  相似文献   

13.
采用钢/钛/隔离剂/钛/钢对称结构复合板坯,研究了轧制加热温度(850-1000℃)对钛/钢复合板显微组织、基材强韧性和界面结合性能的影响。结果表明,随着轧制加热温度的升高,界面剪切性能逐步下降。加热温度影响着界面反应相的种类和厚度。在850,875,900℃条件下,轧后冷却扩散过程中,C极容易在钛/钢界面形成TiC层,阻碍了Fe向Ti中扩散,因而界面形成TiC和β-Ti反应层;在950℃和1000℃条件下,由于C在β-Ti中的扩散系数为C在γ-Fe扩散系数的10倍以上,C不能在结合界面富集形成有效的TiC屏障,此时Fe能够在Ti中充分扩散,从而形成了Fe-Ti金属间化物层、TiC层、β-Ti层和α-β Ti层。脆性反应相的厚度与加热温度呈正相关关系。脆性相种类和厚度增加使得钛/钢复合板界面剪切强度出现下降。  相似文献   

14.
爆炸复合TA2/316L板的组织和性能研究   总被引:4,自引:1,他引:3  
评估了爆炸复合TA2/316L板的连接能力,采用SEM、EDS、XRD等试验方法研究了复合板结合区附近的显微组织结构和成分,并对复合板进行了拉剪实验.结果表明,结合区形貌呈波状,结合界面附近形成细晶区;结合区存在不连续的熔合层,该层含有大量金属基体小碎块和合金化后生成的金属间化合物,并产生了裂纹、气孔,且波状结合界面不同位置组织成分分布不均匀等焊接缺陷;两基板之间发生了元素扩散;拉剪实验各项性能满足复合材料使用要求,拉伸后波状界面发生了分离.  相似文献   

15.
采取感应加热的方法异温轧制制备钢/铝复合板,整个过程处于一种Ar气保护氛围,研究了钢/铝复合板的结合性能和微观组织,并与冷轧工艺进行对比,分析了异温轧制工艺对结合性能的影响。结果表明:异温轧制的复合板由于钢层加热温度高于钢的动态再结晶温度,轧后碳钢组织出现等轴晶粒,发生了动态回复和再结晶,并且在钢侧近界面处产生一层平均晶粒尺寸约为5μm的等轴细晶区,相比于冷轧复合板,大大降低了复合板的加工硬化现象。异温轧制的钢/铝复合板微观界面贴合紧密,无孔洞和间隙,跨界面的Al和Fe元素扩散宽度达到2.4μm,复合板达到了良好的冶金结合状态,并且近界面的细晶区改善了板材性能,使得异温轧制复合板的剪切强度远高于冷轧板,在45%压下率下达到了85 MPa,是同等压下率冷轧复合板剪切强度(12 MPa)的7倍,冷轧板断裂发生在钢/铝结合面处,为脆性断裂,而异温轧制的复合板断裂发生在铝合金基体,剪切断面存在大量韧窝,呈现塑性断裂特征。  相似文献   

16.
采用加热轧制复合的方法制备了6061/AZ31/Ti-6Al-4V/AZ31/6061复合板,利用扫描电镜(SEM)、能谱分析仪(EDS)、X射线衍射分析(XRD)和拉伸试验机等分析技术对复合板两种界面的结合机理、力学性能及断裂特征进行了分析.试验结果表明:当轧制压下量大于或等于40%时,由于变形的深入,Ti-6Al-4V层会出现颈缩或断裂;当轧制温度为420℃时,6061/AZ31界面会出现金属间化合物Al3Mg2,且有这种金属间化合物生成的区域,界面拉剪试验过程中会发生断裂,界面的力学性能降低;当轧制温度为380℃、压下量为30%时,Al-Mg-Ti轧制复合板界面结合强度综合性能最优,Al-Mg和Mg-Ti两种界面的失效基本发生在界面原子相互扩散的区域,且不同温度下轧制得到的复合板在拉剪过程中均表现为脆性断裂.  相似文献   

17.
采用热轧法对钢/铝复合板的制备进行了试验,研究了轧制参数及退火工艺对钢/铝板界面组织及力学性能的影响。结果表明,经过不同道次轧制的复合板,高温退火后界面上都会形成脆性的Fe-Al化合物,低温退火后界面上无中间化合物。在一道次轧后低温退火时,没有中间化合物,但板材的结合强度较差,弯折次数不到20次,伸长率不到13%;经过两道次轧制的复合板低温退火后,界面结合良好,弯折次数达59次未产生开裂,最大伸长率近20%。最佳轧制工艺为:第一道次350℃加热保温30 min,以30%压下量轧制。第二道次在600℃加热保温10 min,以80%压下量轧制,轧后在300℃退火4 h。  相似文献   

18.
本文表征了钛/钢爆炸焊接复合板的界面组织和剪切性能,研究爆炸复合过程的界面结合机理。结果表明,在金属板之间形成了波状界面组织,剧烈塑性变形造成钢基体发生明显的塑性流动,并在界面形成连续的漩涡形貌。TEM和XRD检测证实界面存在纳米尺度的过渡层,并包含有固溶体组织和少量金属间化合物。波状界面组织改善了复合板沿爆炸方向的界面剪切强度,剪切断口显示漩涡组织发生韧性断裂形貌。  相似文献   

19.
通过室温冷轧制备出了1060Al/AlSn20Cu/1060Al/钢多层复合板材,并探索了轧制压下量对复合板微观组织和力学性能的影响。利用扫描电子显微镜和电子背散射衍射(EBSD)对复合板微观组织进行表征,通过拉伸试验测量了复合板力学性能。复合板的初始轧制压下量为17%,最小稳定压下量为40%。结果表明,随着轧制压下量的增加,铝合金层中锡相和钢中组织沿轧制方向被拉长,但是纯铝层呈现出等轴晶。随着轧制压下量的增大,复合板抗拉伸强度和界面结合强度增加,而延伸率下降。AlSn20Cu合金层的断裂主要跟其中的锡相有关。  相似文献   

20.
退火温度对钛钢轧制复合板组织和性能的影响   总被引:1,自引:0,他引:1  
利用光学显微镜、扫描电子显微镜、显微硬度计、纳米显微力学探针,研究了不同退火温度对钛钢真空-轧制复合板组织性能的影响。结果表明:热处理过程中,钢侧组织发生回复、再结晶和晶粒长大的过程,碳元素向界面扩散,在界面附近形成铁素体区。热处理温度对钛钢轧制复合板的界面结合性能有显著影响,850℃时性能最好。850℃以下热处理时,在界面上面主要生成TiC;850℃以上热处理时,界面上形成大量的Ti-Fe金属间化合物(Fe2Ti/FeTi)及少量的TiC。Ti-Fe金属间化合物对界面结合性能起到决定性作用,显著降低结合性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号