首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel single switch two diode wide conversion ratio step down/up converter is presented. The proposed converter is derived from the conventional single‐ended primary inductor converter (SEPIC) topology, and it can operate as a capacitor‐diode voltage multiplier, which offers simple structure, reduced electromagnetic interference (EMI), and reduced semiconductor voltage stress. The main advantages of the proposed converter are the continuous input/output current, higher voltage conversion ratio, and near‐zero input and output current ripples compared with the conventional SEPIC converter. The absence of both a transformer and an extreme duty cycle permits the proposed converter to operate at high switching frequencies. Hence, the overall advantages will be: higher efficiency, reduced size and weight, simpler structure and control. The theoretical analysis results obtained with the proposed structure are compared with the conventional SEPIC topology. The performance of the proposed converter is verified through computer simulations and experimental results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In recent years, the soft‐switching techniques have attracted attention for their peculiar advantages such as low switching loss, high power density, EMI/RFI noise reduction, and so on. The authors have previously reported on a quasi‐resonant dc–dc converter using new phase‐shift PWM control scheme. By using the proposed control scheme, circulating current is eliminated and ZVS (Zero Voltage Switching) is achieved with small commutating current. As a result, the conduction losses caused by their currents are substantially reduced. In this paper, the authors apply a proposed control scheme to a quasi‐resonant high‐frequency transformer link dc–ac converter. As a result, all switching devises in this dc–ac converter can achieve soft switching with small commutating current irrespective of inverter mode and rectifier mode. Its operating principle and unique features are described as compared with the symmetrical control scheme of dc–ac converter. Operating performance of this dc–ac converter in the steady state is illustrated by means of simulation results. © 1999 Scripta Technica, Electr Eng Jpn, 130(2): 88–98, 2000  相似文献   

3.
In this paper, a non‐isolated high step‐up dc‐dc converter based on coupled inductor is proposed. The proposed converter can be used in renewable energy applications. In suggested converter, the high voltage is achieved using 3‐winding coupled inductor, which leads to low voltage rate of the switch. A clamp circuit is used to recycle the leakage inductance energy. Also, the clamp circuit prevents the creation of voltage spikes on semiconductor devices and causes the voltage stress of elements are limited to less than the output voltage. The presented theoretical analyses show that the operation of suggested converter in continuous conduction mode needs to small magnetic inductor. Therefore, the size of coupled inductor's core is reduced, and so the size and cost of presented converter will be decreased. Analysis of the proposed converter is provided with laboratory results to verify its performance.  相似文献   

4.
This paper presents a high step‐up soft switched dc–dc converter having the feature of current ripple cancelation in the input stage that is specialized for power conditioning of fuel cell systems. The converter comprises a special half‐bridge converter and a rectifier stage based upon the voltage‐doubler circuit, in which the coupled‐inductor technology is amalgamated with switched‐capacitor circuit. The input current with no ripple is the principal characteristics of this topology that is achieved by utilizing a small coupled inductor. In addition, the low clamped voltage stress across both power switches and output diodes is another advantage of the proposed converter, which allows employing the metal–oxide–semiconductor field‐effect transistors with minuscule on‐state resistance and diodes with lower forward voltage‐drop, and thereby, the semiconductors' conduction losses diminish considerably. The inherent nature of this topology handles the switching scheme based on the asymmetrical pulse width modulation in order for switches to establish the zero voltage switching, leading to lower switching losses. Besides, because of the absence of the reverse‐recovery phenomenon, all diodes turn off with zero current switching. At last, a 250‐W laboratory prototype with the input voltage 24 V and output voltage 380 V is implemented to verify the especial features of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A novel electrical energy storage system interacting with a commercial ac network was designed and experimentally evaluated. It consists of an ac/dc converter modulated by a constantly sampled PWM scheme called Error Tracking Mode and electrical double‐layer capacitors paralleled by monitor circuits. The ac ratings are 100 V, 500 W, and 1.0 power factor. The storage capacity is designed to be 500 Wh. Since the voltage of the capacitor bank decreases to one‐fourth with discharge, a reversible step‐down chopper is inserted between the bank and the ac/dc converter. ac/dc converter efficiencies of 95.6 and 95.8% were obtained in rectifier operation and inverter operation, respectively. The average switching frequencies were set between 10.4 and 11.2 kHz for all operating conditions. Chopper efficiencies of 94.6% and 93.1% were measured in the charge and discharge modes, respectively. The storage efficiency of the capacitor bank was 89.8%. This novel utility‐interactive energy storage system has demonstrated good and rapid performance. © 2000 Scripta Technica, Electr Eng Jpn, 133(2): 52–62, 2000  相似文献   

6.
The authors have devised a new method to decrease high‐frequency harmonics in a specific frequency band by modifying the switching transient slope. In previous studies, there were several problems in applying modified transient pulse width modulation (MT‐PWM) to actual converters. In this paper, three problems are solved using an improved MT‐PWM method. First, the MT‐PWM signal was obtained using a trial‐and‐error approach that involved complex computation procedures in the previous studies. In this paper, a new calculation procedure for obtaining the MT‐PWM waveform using a simple calculation is proposed. Second, a new controller (drain‐source voltage controller) based on voltage feedback is proposed in order to realize a modified switching transient to increase the stability of the switching operation. Third, the dependency of MT‐PWM on source voltage variation is investigated in order to implement MT‐PWM in an actual step‐down converter. From this result, the concept of a new type of controller with the source voltage variation taken into consideration is proposed. Finally, the authors attempted to apply MT‐PWM to an H‐bridge converter to expand the application of MT‐PWM. An H‐bridge converter with MT‐PWM for a dc motor drive is successfully operated in an experiment.  相似文献   

7.
A non‐isolated dual half‐bridge large step‐down voltage conversion ratio converter with non‐pulsating output current, utilizing one coupled inductor, one energy‐transferring capacitor, and one output inductor, is presented herein. The coupled inductor is connected between the input voltage and the output inductor and plays a role to step down the input voltage. Furthermore, the output inductor is used not only to further step down the voltage but also to provide a non‐pulsating output current. Moreover, the proposed converter can achieve zero‐voltage switching. In this study, detailed theoretical deductions and some experimental results of a prototype with 48 V input voltage, 3.3 V output voltage, and 10 A output current are provided to demonstrate the feasibility and effectiveness of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A soft‐switching high step‐up DC‐DC converter with a single magnetic component is presented in this paper. The proposed converter can provide high voltage gain with a relatively low turn ratio of a transformer. Voltage doubler structure is selected for the output stage. Due to this structure, the voltage gain can be increased, and the voltage stresses of output diodes are clamped as the output voltage. Moreover, the output diode currents are controlled by a leakage inductance of a transformer, and the reverse‐recovery loss of the output diodes is significantly reduced. Two power switches in the proposed converter can operate with soft‐switching due to the reflected secondary current. The voltages across the power switches are confined to the clamping capacitor voltage. Steady‐state analysis, simulation, and experimental results for the proposed converter are presented to validate the feasibility and the performance of the proposed converter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a new multiport zero voltage switching dc‐dc converter is proposed. Multiport dc‐dc converters are widely applicable in hybrid energy generating systems to provide substantial power to sensitive loads. The proposed topology can operate in 3 operational modes of boost, buck, and buck‐boost. Moreover, it has zero voltage switching operation for all switches and has the ability to eliminate the input current ripple; also, at low voltage side, the input sources can be extended. In addition, it has the ability of interfacing 3 different voltages only by using 3 switches. In this paper, the proposed topology is analyzed theoretically for all operating modes; besides, the voltage and current equations of all components are calculated. Furthermore, the required soft switching and zero input currents ripple conditions are analyzed. Finally, to demonstrate the accurate performance of the proposed converter, the Power System Computer Aided Design(PSCAD)/Electro Magnetic Transient Design and Control(EMTDC) simulation and experimental results are extracted and presented.  相似文献   

10.
Conventionally, a high accuracy operational amplifier (OPA)‐based current sensor is used for sensing current message under a full load range, which increases the cost characteristic. Instead of a high accuracy OPA‐based current sensor, this paper describes using a switching inductor quasi‐V2 hysteretic control boost dc–dc regulator with a proposed current‐sensing technique named emulated‐ramp feedback (ERF), which can improve transfer efficiency under a full load range. Two control systems are presented in this paper. The first system, a hysteretic voltage control switching boost converter with ERF, achieves the hysteretic voltage control in a boost regulator and lowers the cost characteristic without using compensator. The second system, a quasi‐V2 hysteretic voltage control switching boost converter with ERF, demonstrates the compatibility of ERF technique in rippled‐based control boost converters. The regulator was implemented with TSMC 0.25‐µm HV CMOS process. Experimental results show the second system can work under the specification of 5–12 V with a 0 to 300‐mA load range. Additionally, this system attained a recovery time is 27/95 µs for step‐up/step‐down in a 100 to 300‐mA continuous conduction mode load current, and a peak efficiency of 92.1% with a chip area of only 1.014 mm2. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A unified multi‐stage power‐CMOS‐transmission‐gate‐based quasi‐switched‐capacitor (QSC) DC–DC converter is proposed to integrate both step‐down and step‐up modes all in one circuit configuration for low‐power applications. In this paper, by using power‐CMOS‐transmission‐gate as a bi‐directional switch, the various topologies for step‐down and step‐up modes can be integrated in the same circuit configuration, and the configuration does not require any inductive elements, so the IC fabrication is promising for realization. In addition, both large‐signal state‐space equation and small‐signal transfer function are derived by state‐space averaging technique, and expressed all in one unified formulation for both modes. Based on the unified model, it is all presented for control design and theoretical analysis, including steady‐state output and power, power efficiency, maximum voltage conversion ratio, maximum power efficiency, maximum output power, output voltage ripple percentage, capacitance selection, closed‐loop control and stability, etc. Finally, a multi‐stage QSC DC–DC converter with step‐down and step‐up modes is made in circuit layout by PSPICE tool, and some topics are discussed, including (1) voltage conversion, output ripple percentage, and power efficiency, (2) output robustness against source noises and (3) regulation capability of converter with loading variation. The simulated results are illustrated to show the efficacy of the unified configuration proposed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposes a new power decoupling method for a high‐frequency cycloconverter which converts the single‐phase line‐frequency ac input to the high‐frequency ac output directly. The cycloconverter consists of two half‐bridge inverters, two input filter capacitors, and a series‐resonant circuit. The proposed power decoupling method stores the input power ripple at double the line frequency in the filter capacitors. Therefore, the proposed method achieves a unity power factor in ac input and a constant current amplitude in the high‐frequency output without any additional switching device or energy storage element. This paper theoretically discusses the principle and operating performance of the proposed power decoupling method, and the viability is confirmed by using an experimental isolated ac‐to‐dc converter based on the high‐frequency cycloconverter. As a result, the proposed power decoupling method effectively improved the displacement power factor in the line current to more than 0.99 and reduced the output voltage ripple to 4% without any electrolytic capacitor.  相似文献   

13.
The conventional auxiliary power supply (APS) of a railway vehicle is directly connected to the catenary through the LC filter. Hence, the switching devices of the APS must have a high breakdown voltage to account for catenary voltage fluctuation. On the other hand, low‐voltage switching devices have better characteristics that are desirable for low‐loss and high‐frequency operation. Therefore, a step‐down converter is incorporated between the LC filter and inverter to adapt to catenary voltage fluctuations when using low‐voltage switching devices. This paper proposes the series‐parallel continuously regulated chopper as a novel step‐down converter. First, the fundamental operation characteristics and output voltage control method of the proposed chopper are introduced. The simulation and experimental results for the fundamental characteristics are then described; the simulation and experimental values were almost the same as the theoretical values. The proposed chopper controls the output voltage at the expected value without dramatic fluctuation regardless of the input voltage fluctuation. In addition, a resonance damping control for a constant power load is proposed. The operational characteristics were considered under different potential distributions or load conditions.  相似文献   

14.
In this paper, a two‐switch high‐frequency flyback transformer‐type zero voltage soft‐switching PWM DC‐DC converter using IGBTs is proposed. Effective applications for this power converter can be found in auxiliary power supplies of rolling stock transportation and electric vehicles. This power converter is basically composed of two active power switches and a flyback high‐frequency transformer. In addition to these, two passive lossless snubbers with power regeneration loops for energy recovery, consisting of a three‐winding auxiliary high‐frequency transformer, auxiliary capacitors and diodes are introduced to achieve zero voltage soft switching from light to full load conditions. Furthermore, this power converter has some advantages such as low cost circuit configuration, simple control scheme, and high efficiency. Its operating principle is described and to determine circuit parameters, some practical design considerations are discussed. The effectiveness of the proposed power converter is evaluated and compared with the hard switching PWM DC‐DC converter from an experimental point of view, and the comparative electromagnetic conduction and radiation noise characteristics of both DC‐DC power converter circuits are also depicted. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 152(3): 74–81, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20081  相似文献   

15.
In this paper, a pulse width modulation DC‐DC converter with high step‐up voltage gain is proposed. The proposed converter achieves high step‐up voltage gain with appropriate duty ratio, coupled inductor, and voltage multiplier technique. The energy stored in the leakage inductor of the coupled inductor can be recycled in the proposed converter. Moreover, because both main and auxiliary switches can be turned on with zero‐voltage switching, switching loss can be reduced by soft‐switching technique. So the overall conversion efficiency is improved significantly. The theoretical steady‐state analyses and the operating principles of the proposed converter are discussed in detail for both continuous conduction mode and discontinuous conduction mode. Finally, a laboratory prototype circuit of the proposed converter is implemented to verify the performance of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Aimed at a back‐lighting application, a dual‐input switched‐capacitor (SC) DC–DC converter with battery charge process is proposed in this paper. The proposed converter can realize −1/N× (N = 2,3,…) step‐down conversion as well as (N + 1)/N× step‐up conversion. By converting clean energy such as solar energy, the proposed dual‐input converter not only drives light‐emitting diodes (LEDs) but also recharges the battery, although conventional single‐input converter only consumes battery energy. In the proposed converter, the −1/N× stepped‐down voltage is generated to drive the LED's cathode when the input voltage is insufficient to drive a 1× transfer mode. Furthermore, unlike conventional converters, the battery is charged by the (N + 1)/N× stepped‐up voltage when the LED back light is in standby mode. Hence, the proposed converter can realize long battery run time. The validity of circuit design is confirmed by theoretical analyses, simulations, and experiments. The derived theoretical formulas will be helpful to estimate circuit characteristics, because the theoretical results correspond well with the simulation program with integrated circuit emphasis (SPICE) simulation results. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

17.
This paper presents a current‐doubler rectifier with low output current ripple and high step‐down voltage ratio. In the proposed rectifier, two extra inductors are introduced to extend the duty ratio of the switches, which in turn reduces the peak current through the isolation transformer as well as the output current ripple; two extra diodes are used to provide discharge paths for the two extra inductors. To highlight the merits of the proposed rectifier, its performance indexes, such as voltage gain function, secondary winding peak current of the isolation transformer, and output current ripple, are analyzed and compared with the conventional current‐doubler rectifier. In this paper, a zero‐voltage‐switching phase‐shift full‐bridge converter with the proposed rectifier with an input voltage of 400 V, output voltage of 12 V, and full load power of 500 W has been implemented and verified, and experimental results have shown that 90% conversion efficiency could be achieved at full load. © 2013 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

18.
This paper proposes a novel nonisolated single‐switch cascaded high step‐up converter. The converter consists of coupled inductors, a clamp circuit, and cascaded capacitors to achieve high step‐up voltage output. Only one switch is used in the proposed converter; the switch can reduce cost efficiently and simplify the control of the proposed converter. The converter also possesses an energy‐recycle mechanism for recycling the spike energy of a leakage inductor. In addition, a clamp circuit is used to reduce voltage‐stress across the switch, and a cascaded design is used to reduce voltage‐stress across diodes and output capacitor. Thus, the proposed converter can select a low‐voltage stress switch for reducing circuit loss and improving the efficiency of the converter. Finally, in this study, a 400‐W nonisolated cascaded high step‐up converter was implemented, of which the input and output voltages are 48 and 400 V, respectively. A microcontroller dsPIC30F4011 was used to control the converter and verify system effects and feasibility. The maximum efficiency of the proposed converter is 95% and the efficiency under a full load is 93%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a high‐frequency isolated ac/dc converter using the soft switching technique. The ac/dc converter consists of a matrix converter for transforming three‐phase ac voltage to high‐frequency ac voltage, a high‐frequency transformer, and an ac/dc rectifier. In order to reduce the switching loss, soft switching at every commutation of the matrix converter and ac/dc converter is achieved. The effectiveness of the proposed converter and the control scheme was verified by experiments.  相似文献   

20.
This paper presents a novel input current shaper based on a quasi‐active power factor correction (PFC) scheme. In this method, high power factor and low harmonic content are achieved by providing an auxiliary PFC circuit with a driving voltage which is derived from a third winding of the transformer of a cascaded dc/dc flyback converter. It eliminates the use of active switch and control circuit for PFC. The auxiliary winding provides a controlled voltage‐boost function for bulk capacitor without inducing a dead angle in the line current. Since the dc/dc converter operates at high switching frequency, the driving voltage is also of high switching frequency, which results in reducing the size of the magnetic components. Operating principles, analysis and experimental results of the proposed method are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号