首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This study aims to present the hydro-catalytic treatment of organoamine boranes for efficient thermal dehydrogenation for hydrogen production. Organoamine boranes, methylamine borane (MeAB), and ethane 1,2 diamine borane (EDAB), known as ammonia borane (AB) carbon derivatives, are synthesized to be used as a solid-state hydrogen storage medium. Thermal dehydrogenation of MeAB and EDAB is performed at 80 °C, 100 °C, and 120 °C under different conditions (self, catalytic, and hydro-catalytic) for hydrogen production and compared with AB. For this purpose, a cobalt-doped activated carbon (Co-AC) catalyst is fabricated. The physicochemical properties of Co-AC catalyst is investigated by well-known techniques such as ATR/FT-IR, XRD, XPS, ICP-MS, BET, and TEM. The synthesized Co-AC catalyst obtained in nano CoOOH structure (20 nm, 12% Co wt) is formed and well-dispersed on the activated carbon support. It has indicated that Co-AC exhibits efficient catalytic activity towards organoamine boranes thermal dehydrogenation. Hydrogen release tests show that hydro-catalytic treatment improves the thermal dehydrogenation kinetics of neat MeAB, EDAB, and AB. Co-AC catalyzed hydro-treatment for thermal dehydrogenation of MeAB and EDAB acceleras the hydrogen release from 0.13 mL H2/min to 46.12 mL H2/min, from 0.16 mL H2/min to 38.06 mL H2/min, respectively at 80 °C. Moreover, hydro-catalytic treatment significantly lowers the H2 release barrier of organoamine boranes thermal dehydrogenation, from 110 kJ/mol to 19 kJ/mol for MeAB and 130 kJ/mol to 21 kJ/mol for EDAB. In conclusion, hydro and catalytic treatment presents remarkable synergistic effect in thermal dehydrogenation and improves the hydrogen release kinetics.  相似文献   

2.
In the present study, the semi-continuous regime is evaluated for generating hydrogen (H2) from carbon derivatives of ammonia borane (AB) via hydrolysis in presence of cobalt-doped activated carbon catalyst (Co-AC). Methylamine borane (MeAB) and ethane 1,2 diamine borane (EDAB) is used as an H2 storage medium. At first, catalytic activity tests are performed between 20 °C and 80 °C. 0.2 M MeAB, EDAB, and also AB are hydrolyzed with - Co-AC catalyst, and the results are compared in two temperature regions. EDAB shows the lowest hydrogen generation rate at 64.38 mLH2/min.gCo-AC of all carbon derivatives of AB due to its higher thermal stability. The power-law model is used to describe the kinetic rate and activation energy (Ea) for all the reactants in the catalytic hydrolysis reaction and the reaction kinetics studied in two temperature regions as the low-temperature region (20–50 °C) and the high-temperature region (60–80 °C). The zero-order kinetic model describes each temperature region for each reactant. The Ea values of AB, MeAB, and EDAB are calculated as in the range of 48–65 kJ mol-1 for the low-temperature region and in the range of 33–51 kJ mol-1 for the high temperature region. The semi-continuous regimes were performed at 60 °C with the same amount of AB, MeAB, EDAB, and Co-AC catalyst used for catalytic activity tests. The hydrogen generation rates for the semi-continuous regime are calculated to be 2.46 L/h, 0.86 L/h, and 0.17 L/h for AB, MeAB, and EDAB, respectively. The used catalysts and the exhaust solutions are also characterized. After the semicontinuous regime, the characterization results show that Co-AC is stable and Co species does not leach into the exhaust solution. Also, boron is accumulated on the catalyst observed due to by-product formation during the hydrolyses.  相似文献   

3.
In this study, p(AAm-co-TACYC) hydrogels were synthesized using TACYC crosslinker. The p(AAm-co-TACYC) hydrogel was used for preparation of Cu(0) nanoparticles as support material. The p(AAm-co-TACYC)@Cu was prepared by chemical reduction of Cu2+ ions in the p(AAm-co-TACYC) networks and was structurally characterized in detail. Later the catalytic activity of p(AAm-co-TACYC)@Cu was investigated for hydrogen production from AB and EDAB hydrolysis. Detailed kinetic studies were performed for both hydrogen storage materials. The p(AAm-co-TACYC)@Cu was a more active catalyst for the EDAB hydrolysis reaction. The Ea values of p(AAm-co-TACYC)@Cu for the AB and EDAB hydrolysis reactions were determined as 68.36 kJ mol−1 and 39.07 kJ mol−1, respectively. In addition to the perfect catalytic activity of p(AAm-co-TACYC)@Cu, it had good reusability. After ten consecutive uses for AB and EDAB hydrolysis, the p(AAm-co-TACYC)@Cu still had 88% and 85% of initial activity, respectively.  相似文献   

4.
In this study, the hydrogen generation from the catalytic hydrolysis of the ethylenediamine bisborane (EDAB) was performed. For this purpose, the p(sulfopropyl acrylate potassium salt-co-2-acrylamido-2-methylpropansulfonic acid sodium salt)@Ag(0) (p(SPA-co-AMPS)@Ag) catalyst was prepared. Later the p(SPA-co-AMPS)@Ag containing Ag(0) particles with nanodimensions was used as catalyst in EDAB hydrolysis. Our study is the first in the literature from this aspect, and investigated in detail the effect of catalyst amount, reactive concentration, temperature and dry or swollen nature of the catalyst on the EDAB hydrolysis. At the end of the reaction series, the hydrolysis reaction of EDAB with p(SPA-co-AMPS)@Ag catalyst was determined to have activation energy (Ea) of 43.24 kJmol-1. Additionally, the turn over frequency (TOF) was 0.560 mol H2(mol Ag(0).min)−1 at 30 °C. The p(SPA-co-AMPS)@Ag catalyst had perfect reusability with 95% of initial activity after the 5th use for the hydrogen generation from EDAB.  相似文献   

5.
Nitroarenes are important chemicals but display toxity to environment and organisms. In the present work, non-precious bicomponent CuCo-based nanocomposites (CuCo2O4/CuO) prepared with the aid of gamma(γ)-ray-irradiation were utilized for hydrogen production from ammonia borane (AB) hydrolysis and tandem hydrogenation of nitroarenes. The γ-ray-irradiation remarkably boosted the catalytic performance for the AB dehydrogenation and the hydrogenation of nitroarenes. Hydrogen generation rate (HGR) for the CuCo2O4/CuO catalyst reached 856.3 mL min−1·gcat−1, which was approximately two-fold than that of the catalyst prepared by conventional method (only 397.1 mL min−1·gcat−1). Meanwhile, this irradiation-induced catalyst also showed excellent performance for the hydrogenation of screened nitroarenes with 100% yield of the corresponding amines. The CuCo2O4/CuO catalyst exhibited high reusability with ∼90% remained activity of the initial one after six runs. The bicomponent CuCo2O4/CuO exhibited positive hydrogen spillover and synergistic effects contributing to the considerable activity improvement, which is beneficial to the detoxication, conversion and utilization of poison nitroarenes.  相似文献   

6.
Addressed herein is the catalysis of reduced graphene oxide-supported monodisperse NiPd alloy nanoparticles (NPs) (rGO-NiPd) in the hydrolytic dehydrogenation of ammonia borane (AB). This is the first example of the use of NiPd alloy NPs as catalyst in the hydrolytic dehydrogenation of AB. Monodisperse NiPd alloy NPs (3.5 nm) were synthesized by co-reduction of nickel(II) acetate and palladium(II) acetylacetonate in oleylamine (OAm) and borane-tert-butylamine complex (BTB) at 100 °C. The current recipe allowed to control the composition of NiPd alloy NPs and to study the composition-controlled catalysis of rGO-NiPd in the hydrolytic dehydrogenation of AB. Among the all compositions tested, the Ni30Pd70 was the most active one with the turnover frequency of 28.7 min−1. The rGO-Ni30Pd70 were also durable catalysts in the hydrolytic dehydrogenation of AB providing 3650 total turnovers in 35 h and reused at six times without deactivation. The detailed reaction kinetics of hydrolytic dehydrogenation of AB revealed that the reaction proceeds first order with respect to the NiPd concentration and zeroth order with respect to the AB concentration. The apparent activation energy of the catalytic dehydrogenation of AB was also calculated to be Eaapp = 45 ± 2 kJ*mol−1.  相似文献   

7.
Efficient, low-cost and safe new systems are still needed for the storage and usage of hydrogen energy, which is considered the most important energy source of the future. For this reason, the aim of this study was to prepare Co0, Ni0, and Cu0 composite catalysts with fly ash (FA) formed by combustion of coal in thermal power plants to be used for the dehydrogenation of ethylenediamine bisborane (EDAB) as a hydrogen source. In the hydrolysis reactions of EDAB, parameters such as metal type, catalyst concentration, temperature, and EDAB concentration were investigated. The FA-Cu0 composite catalyst was determined to be an effective catalyst system for hydrogen production by hydrolysis of EDAB from among the FA-M0 composite catalysts. Besides, FA can be used as an effective support material in order to prevent agglomeration of metal particles.  相似文献   

8.
In this paper, ruthenium supported on nitrogen-doped porous carbon (Ru/NPC) catalyst is synthesized by a simple method of in situ reduction using ammonia borane (AB) as reducing agent. The composition and structure of Ru/NPC catalyst are systematically characterized. This catalyst can efficiently catalyze the hydrolysis of AB. The hydrogen production reaction is completed within about 90 s at a temperature of 298 K and the maximum rate of hydrogen production is 3276 ml·s−1·g−1 with a reduced activation energy of 24.95 kJ·mol−1. The turnover frequency (TOF) for hydrogen production is about 813 molH2·molRu−1·min−1. Moreover, this catalyst can be recycled with a well-maintained performance. After five cycles, the maximum rate of hydrogen generation is maintained at 2206 ml·s−1·g−1, corresponding to 67.3% of the initial catalytic activity. Our results suggest that Ru/NPC prepared by in situ reduction is a highly efficient catalyst for hydrolytic dehydrogenation of AB.  相似文献   

9.
Chemically derived graphene (CDG) was prepared by hydrazine hydrate reduction of graphene oxide and used as support for palladium nanoparticles (Pd NPs) generated ex situ with controllable particle size and dispersion. The Pd NPs supported on CDG were well characterized by using a combination of advance analytical techniques and employed as catalyst in the dehydrogenation and hydrolysis of ammonia borane (AB) in organic solvents and aqueous solutions, respectively. Monodisperse Pd NPs of 4.5 nm were prepared from the reduction of palladium(II) acetylacetonate by tert-butylamine borane in the presence of oleylamine. They were readily impregnated on CDG which has BET surface area of 500 m2 g−1. Pd NPs retain their particle size dispersion and stability when supported on chemically derived graphene. The resulting materials are highly active and stable catalyst for the dehydrogenation and hydrolysis of AB. In addition to their high activity and stability, these Pd NPs are also reusable catalyst in both dehydrogenation and hydrolysis of AB preserving 85% and 95% of initial activity after 5th and 10th runs, respectively.  相似文献   

10.
In this study, the hydrogen generation from catalytic hydrolysis of ethylenediamine bisborane (EDAB) solution catalyzed by nanostructured titanium dioxide (TiO2) supported Pd metallic catalyst was carried out. TiO2 support material was synthesized by the sol-gel method from titanium (IV) ethoxide. Pd was loaded into TiO2 by the conventional impregnation-reduction method and reduction was carried out at 750 °C in an H2 atmosphere. The characterization of catalysts was done with SEM-EDX and multi-point BET analysis. To investigate the hydrogen production by catalytic hydrolysis of EDAB, parameters such as Pd loading (2–4% by weight) and temperature (40–80 °C) were chosen in the presence of ethylenediamine bisborane aqueous solution (0.034% by weight). Detailed non-linear kinetic analysis was applied to the experimental data by considering and Langmuir-Hinshelwood model and power law. The activation energy Ea was calculated as Ea = 33.61 kJ mol?1 and Ea = 36.32 kJ mol?1 according to Langmuir-Hinshelwood and power-law model respectively for the Pd/TiO2 catalyst.  相似文献   

11.
In chemical hydrogen storage, nanoconfinement (or nanoscaffolding) is an efficient approach to reduce the size of the particles of boron hydrides such as ammonia borane (AB, NH3BH3) at nanoscale while destabilizing its molecular network. It involves the dehydrogenation of AB at temperatures lower than 100 °C and hinders the formation of undesired gaseous by-products such as borazine. Herein, commercial activated carbon (AC) with a specific surface area of 716 m2 g−1 and a porous volume of 0.36 cm3 g−1 was used as host material for AB nanoconfinement. A composite activated carbon-ammonia borane (AC@AB) was successfully prepared by infiltration in cold conditions (0 °C). Its dehydrogenation was followed by volumetric method, FTIR, XRD, TGA, DSC, GC–MS and 11B MAS NMR. The most striking result is that the nanoconfined AB, being highly destabilized, dehydrogenates in ambient conditions, even at 3–4 °C. It is demonstrated that dihydrogen is formed according to two pathways that simultaneously take place. The first one is the dehydrogenation through inter- and/or intra-molecular reactions between protonic H and hydridic H of AB, and the second one is the acid-base reaction between protonic H of COO−H groups present on the AC surface and hydridic H of AB.  相似文献   

12.
The heat transfer oil dibenzyltoluene (DBT) offered an intriguing approach for the scattered storage of renewable excess energy as a novel Liquid Organic Hydrogen Carrier (LOHC). The integration of hydrogenation and dehydrogenation in H0-DBT/H18-DBT pairs demonstrated that the feasibility of hydrogenation and dehydrogenation reaction conducted in one reactor with the same catalyst, which would be proposed to simplify the hydrogen storage process. The optimal reaction temperature based on the inhibition of ring opening and cracking was investigated combined with the 1H NMR analysis. Meanwhile, the ideal catalyst 3 wt% Pt/Al2O3 for high hydrogen storage efficiency was screened out. Cycle tests of hydrogenation and dehydrogenation integration reaction had shown that the hydrogen storage efficiency was 84.6% after five cycle tests. The integration of hydrogenation and dehydrogenation reaction based on DBT exhibited the ideal thermal stability, which demonstrated its potential as a reversible H2 carrier.  相似文献   

13.
We report the preparation of Ni3B and carbon-supported Ni3B (denoted as Ni3B/C) nanoparticles, and their catalytic performance for hydrogen generation from hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB). Ni3B and Ni3B/C were prepared via a chemical reduction and crystallization in tetraethylene glycol solution. The obtained Ni3B catalysts are in well-defined crystalline state and Ni3B/C catalysts have a high dispersion in the carbon. The hydrogen generation measurement shows that the carbon-supported Ni3B presents enhanced catalyst activity during hydrolytic dehydrogenation of AB. Among the as-prepared Ni3B/C catalysts, Ni3B/C with 34.25 wt% Ni3B loading displays the best catalytic activity, delivering a high hydrogen release rate of 1168 mL min−1 g−1 and the lower activation energy of 46.27 kJ mol−1. The kinetic results show that the hydrolysis is a first-order reaction in catalyst concentration, while it is a zero-order in AB concentration. Furthermore, the Ni3B/C is a recyclable catalyst under mild reaction conditions, indicating that the carbon-supported Ni3B is a promising catalyst for AB hydrolytic dehydrogenation.  相似文献   

14.
The development of catalysts with high activity for tandem reaction are all the ways pursued by chemists. Herein, CuO–Ru0.3@Co3O4 has been synthesized and used as efficient tandem catalyst to promote the release of hydrogen from hydrolytic dehydrogenation of ammonia borane (AB) to catalyze the hydrogenation of nitrobenezenes (NBs). The catalyst exhibits the TOF of 29.87 min?1 and provides the apparent activation energy of 45.2 kJ mol?1 for the hydrolytic dehydrogenation of AB. Additionally, benefited from the magnetic separation capability, up to 99% of its initial catalytic activity is retained after four catalytic cycles.  相似文献   

15.
An effective strategy synthesis of Rh/meso-Al2O3 catalysts was demonstrated by mechanochemistry for hydrolytic dehydrogenation of ammonia borane (AB). These catalysts are characterized systematically by N2 adsorption-desorption isotherms, X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscope (SEM), and transmission electron microscope (TEM). The results show that the turnover frequency (TOF) and activation energy (Ea) are 246.8 molH2·molRh?1·min?1 and 47.9 kJ mol?1 for hydrolytic dehydrogenation of at 298 K catalyzed by Rh/Al2O3-CTAB-400, obviously higher than those previously reported catalysts. Furthermore, catalyst Rh/Al2O3-CTAB-400 can be recycled by simple centrifugal separation and the catalytic activity is still well maintained after five cycles. In addition, a plausible mechanism for hydrolytic dehydrogenation of AB has also been proposed. This mechanochemical synthesis method exhibits great application prospects for the preparation of heterogeneous catalysts.  相似文献   

16.
Hydrolytic dehydrogenation of ammonia borane (AB) driven by efficient catalysts has attracted considerable attention and is regarded as a promising strategy for hydrogen generation. Herein, RuP2 quantum dots supported on graphitic carbon nitride (g-C3N4) were successfully prepared by in-situ phosphorization, yielding a highly efficient photocatalyst toward AB hydrolysis. The catalysts were characterized by field-emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction, x-ray photoelectron microscopy, inductively coupled plasma atomic emission spectroscopy, UV–visible diffuse reflectance spectroscopy and photoluminescence spectroscopy. A conventional water-displacement method was employed to record the hydrogen volume as a function of reaction time. Owing to visible-light irradiation, the initial turnover frequency of the AB hydrolysis was significantly enhanced by 110% (i.e., 134 min?1) at room temperature. Furthermore, the apparent activation energy decreased from 67.7 ± 0.9 to 47.6 ± 1.0 kJ mol?1. The photocatalytic hydrolysis mechanism and catalyst reusability were also investigated.  相似文献   

17.
In this study, Ru(0) nanoparticles supported in 2-hydroxyethyl starch-p-(2-Acrylamido-2-methyl-1-propanesulfonic acid) interpenetrating polymeric network (HES-p(AMPS) IPN) were synthesized as hydrogel networks containing hydroxyethyl starch, which is a natural polymer with oxygen donor atoms. The structure and morphology of the prepared HES-p(AMPS) IPN hydrogel and Ru@HES-p(AMPS) IPN catalyst were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscope (TEM). Ru@HES-p(AMPS) IPN was used as catalyst for hydrogen production from the hydrolysis of ethylenediamine bisborane (EDAB). The activation parameters for the hydrolysis reaction of EDAB catalyzed by Ru@HES-p(AMPS) IPN were calculated as Ea = 38.92 kJ mol−1, ΔH# = 36.28 kJ mol−1, and ΔS# = −111.85 J mol−1 K−1, respectively. The TOF for the Ru@HES-p(AMPS) IPN catalyst was 2.253 mol H2 (mol Ru(0) min)−1. It was determined that Ru@HES-p(AMPS) IPN, a reusable catalyst, still had 81.5% catalytic activity after the 5th use.  相似文献   

18.
This work addresses the accelerated dehydrogenation of ammonia borane (AB, NH3BH3) in two separate processes of CO2 pre-treatment of AB and dehydrogenation of the treated AB. Decoupling these two processes can still keep the dehydrogenation activity of CO2-treated AB and eliminate the purification step of H2 from gas phase. When AB is exposed to 1.38 MPa of carbon dioxide (CO2) at 70 °C, it shows the most favorable and controllable operating condition for the CO2 pre-treatment. The pre-treatment enhances not only the rate but also the amount of hydrogen release at the dehydrogenation step; 1.5 mol H2 per mol of AB rapidly desorbs at 85 °C in 1 h, corresponding to 10.1 wt.% of hydrogen with regard to pristine AB. Also, our observations show that the fast dehydrogenation resulted from the CO2 pre-treatment is preserved for more than four days of storage. The degree of dehydrogenation is further confirmed by ATR-FTIR spectroscopic and elemental analyses of the solid product. The spectra display the N–H stretching mode involving π-bonded nitrogen (sp2 N) at ca. 3434 cm−1,while the atom ratio of H:B is found to be 2.84:1. Based on the hydrogen release measurements, spectroscopic observations and elemental analyses, we deduce that the predominant solid product of dehydrogenation of CO2-treated AB at 85 °C is a polymer with an empirical formula of (NBH3)n. It corresponds to the solid product after 1.5 equivalent hydrogen release of AB.  相似文献   

19.
The investigation of dehydrogenation catalysts to achieve rapidly hydrogen release of Liquid Organic Hydrogen Carriers (LOHCs) are of crucial importance for large-scale applications. The catalyst supports with bulk surface area and decent acid-base nature is a key parameter for catalyst to improve its catalytic performance as well as reduce precious metal dosage. Herein, alumina was chosen as a support for Pd loading and prepared through hydrothermal route at different temperatures. The morphology and surface acid property of the alumina supports were investigated in detail. The results revealed that the hydrothermal temperature had a closely effect on the morphology, surface acidity and specific surface area of alumina, resulting in a further impact on Pd dispersion and particle size associated tightly with catalytic activity of Pd/Al2O3. The catalyst with 1 wt% Pd loaded on alumina carrier prepared via hydrothermal treatment at 120 °C showed the best catalytic performance for dehydrogenation of perhydro-N-propylcarbazole (12H-NPCZ). Full dehydrogenation with 100% conversion to N-propylcarbazole (NPCZ) could be achieved after 360 min at 180 °C and 101 kPa, which is higher than that of commercial 5 wt% Pd/Al2O3 catalyst. The catalyst has potential commercial application value in large-scale application of LOHC technology.  相似文献   

20.
Hydrogen evolution from ammonia borane (AB) hydrolysis is of great importance considering the ever-increasing demand for green and sustainable energy. However, the development of a facile and efficient strategy to construct high-performance catalysts remains a grand challenge. Herein, we report an amino-group and space-confinement assisted strategy to fabricate Rh nanoparticles (NPs) using amino-functionalized metal-organic-frameworks (UiO-66-NH2) as a NP matrix (Rh/UiO-66-NH2). Owing to the coordination effect of amino-group and space-confinement of UiO-66-NH2, small and well-distributed Rh NPs with a diameter of 3.38 nm are successfully achieved, which can be served as efficient catalysts for AB hydrolysis at room temperature. The maximum turnover frequency of 876.7 min?1 is obtained by using the Rh/UiO-66-NH2 with an optimal Rh loading of 4.38 wt% and AB concentration of 0.2 M at 25 °C, outperforming most of the previously developed Rh-based catalysts. The catalyst is also stable in repetitive cycles for five times. The high performance of this catalyst must be ascribed to the structural properties of UiO-66-NH2, which enable the formation of small and well-dispersed Rh NPs with abundant accessible active sites. This study provides a simple and efficient method to significantly enhance the catalytic performance of Rh for AB hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号