首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flat mixed matrix membranes (MMMs) comprising polysulfone and clinoptilolite-type natural zeolite were prepared by casting. Zeolite was modified with three alkylamines: ethanolamine (EA), bis(2-hydroxypropyl)amine (BHPA), and polyethylenimine (PEI) by the impregnation method. Impregnated zeolite samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and N2 adsorption–desorption. The alkylamine loading extent determined by thermogravimetric analysis was 5.2, 4.8, and 8.5% for EA, BHPA, and PEI, respectively. Analyses of MMMs showed that the incorporation of impregnated zeolite affected the glass-transition temperature (Tg) and mixed-gas transport properties. In this regard, a decreasing trend of the Tg values from 185.5 °C for the polymeric membrane up to 176.6 °C for Clino-EA-based MMM was recorded. In addition, the gas separation performance was evaluated at two different feed pressures. At 50 psi, MMMs showed an enhancement up to 30% on the CO2 permeability (22.79 Barrer) and 55% on the CO2/CH4 selectivity (45.78) in comparison with the polymeric membrane (CO2 permeability 17.34 Barrer; CO2/CH4 selectivity 29.38). These values varied depending on the alkylamine, BHPA being the most selective. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48286.  相似文献   

2.
Membrane technology has emerged as a leading tool worldwide for effective CO2 separation because of its well-known advantages, including high surface area, compact design, ease of maintenance, environmentally friendly nature, and cost-effectiveness. Polymeric and inorganic membranes are generally utilized for the separation of gas mixtures. The mixed-matrix membrane (MMM) utilizes the advantages of both polymeric and inorganic membranes to surpass the trade-off limits. The high permeability and selectivity of MMMs by incorporating different types of fillers exhibit the best performance for CO2 separation from natural gas and other flue gases. The recent progress made in the field of MMMs having different types of fillers is emphasized. Specifically, CO2/CH4 and CO2/N2 separation from various types of MMMs are comprehensively reviewed that are closely relevant to natural gas purification and compositional flue gas treatment  相似文献   

3.
Mixed matrix membranes (MMMs), which combine the characteristics of inorganic nanofillers and organic matrices, have received wide attention because of their good permeability and selective performance for separating CO2 from industrial waste gases. In this work, the amino-GO-loaded bentonite (amino GO-Bent) was prepared by loading  NH2 on the GO surface with a large number of functional sites. Firstly, by introducing  NH2 on the surface of GO and then interacting with bentonite (Bent) organically modified by silane coupling agents through amide bonding. Mixed matrix membranes (MMMs) with an area of 623.7 cm2 and homogeneous texture were prepared using amino-GO-Bent as inorganic filler to improve the membrane selectivity for CO2/N2 and CO2/CH4 separation. The results show that the introduction of amino GO-Bent in MMMs can greatly improve the CO2 permeability and obtain high CO2 permeation performance: 2.67945 × 10−7 cm3 (STP)·cm/s/cm2/cmHg, and the selectivity of CO2/N2 and CO2/CH4 can reach 307.28 and 325.97, respectively. The two selective values were 14 and 18 times higher than those of pure PVDF membranes, and the performance of MMMs far exceeded the Robeson upper limit in 2008, respectively.  相似文献   

4.
Nowadays, mixed matrix membranes (MMMs) have considered by many researchers to overcome the problems of polymeric membranes. In addition, molecular dynamics (MD) and Monte Carlo (MC) simulation Methods are suitable tools for studying transport properties and morphology in MMMs. For this purpose, in this study using material studio 2017 (MS) software, the transport properties of CO2, CH4 and N2 in Pebax, Psf neat Pebax/Psf composite and Pebax/Psf composite filled with ZIF-90 particles have been investigated. By adding Psf to Pebax matrix, the selectivity of CO2/CH4 and CO2/N2 gases has significantly increased. In addition, adding ZIF-90 particles to the Pebax/Psf composite increased the permeability of CO2, CH4 and N2 compared to neat and composite membranes. The morphological properties of the membranes, such as the fractional free volume (FFV), radial distribution function (RDF), glass transition temperature (TG), X-ray diffraction (XRD) and equilibrium density have calculated and acceptable results have obtained.  相似文献   

5.
Mixed matrix membranes (MMMs) were prepared by solvent evaporation method using Pebax-1074 polymer as matrix and inorganic zeolite SAPO-23 as dopant. The morphology, surface functional groups, microstructure, thermal stability, and separation performance of MMMs were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and gas permeation, respectively. The effects of dopant loading amount, permeation temperature, and permeation pressure on the structure and properties of MMMs were investigated. The results showed that the introduction of SAPO zeolite reduced the crystallinity of the MMMs and improved the CO2/N2 selectivity. Under the conditions of 30°C and 0.15 MPa, the MMMs prepared by incorporating with 5% SAPO zeolite in content exhibited the highest CO2/N2 selectivity of 72.0 together with the CO2 permeability of 98.2 Barrer.  相似文献   

6.
SAPO-34 nanocrystals (inorganic filler) were incorporated in polyurethane membranes and the permeation properties of CO2, CH4, and N2 gases were explored. In this regard, the synthesized PU-SAPO-34 mixed matrix membranes (MMMs) were characterized via SEM, AFM, TGA, XRD and FTIR analyses. Gas permeation properties of PU-SAPO-34 MMMs with SAPO-34 contents of 5 wt%, 10 wt% and 20 wt% were investigated. The permeation results revealed that the presence of 20 wt% SAPO-34 resulted in 4.45%, 18.24% and 40.2% reductions in permeability of CO2, CH4, and N2, respectively, as compared to the permeability of neat polyurethane membrane. Also, the findings showed that at the pressure of 1.2 MPa, the incorporation of 20 wt% SAPO-34 into the polyurethane membranes enhanced the selectivity of CO2/CH4 and CO2/N2, 14.43 and 37.46%, respectively. In this research, PU containing 20 wt% SAPO-34 showed the best separation performance. For the first time, polynomial regression (PR) as a simple yet accurate tool yielded a mathematical equation for the prediction of permeabilities with high accuracy (R2 > 99%).  相似文献   

7.
An innovative technique to efficiently remove CO2 involves introducing a third component with a positive affinity with CO2 into a binary mixed-matrix membrane (MMM) and eliminating interfacial defects in its structure. In this research, novel ternary MMMs (TMMMs) were synthesized by embedding 1–Hexyl–3–methylimidazolium bis(trifluoromethylsulfonyl)imide ([HMIM][NTf2]) ionic liquid (IL) and aluminum oxide (γ–Al2O3) nanoparticles into poly (ether-block-amide) (Pebax-1657) matrix for enhancing CO2 removal from light gases. FESEM, DSC, ATR-FTIR, and XRD analyses were used to evaluate the fabricated MMMs structurally. The permeation tests of gases (CH4, N2, and CO2) through prepared membranes were conducted at 25°C and 4, 6, 8, and 10 bar pressures. In accordance with the permeation outcomes, the ternary MMMs exhibited enhanced CO2 separation performances compared to the unloaded polymeric membrane. Also, the optimized MMM comprising 10 wt.% of the IL and 6 wt.% of the nanoparticles obtained a CO2 permeability of 173.90 Barrer, as well as CO2/N2 and CO2/CH4 selectivities of 77.98 and 24.29 at 10 bar and 25°C, which are higher by about 51%, 23%, and 22%, respectively than those of the pristine polymeric membrane. Based on these results, the prepared membrane appears to be a promising choice for separating CO2 from light gases.  相似文献   

8.
Preparation and characterization of novel polysulfone/zinc oxide (PSf/ZnO) mixed matrix membranes (MMMs) with different ZnO loadings for high selective CO2/CH4 separation were aimed in this study. Scanning electron microscopy photographs demonstrated that spongy and small tear like pores in plain PSf membrane (0 wt % of ZnO) replaced with large tear like pores close to surface layer by increasing ZnO content up to 0.1 and 1 wt %. In contrast, a dense and less free volume structure was obtained in membranes having 3 and 5 wt % of ZnO. Membrane porosity increased from 28.68 to 50.51% with increasing ZnO content from 0 to 1 wt %. Then, a reduction in porosity was observed for membranes containing 3 and 5 wt % of ZnO. Atomic force microscopy images presented variation in membrane surface roughness. Surface roughness decreased from 67.64 nm for plain PSf to 47.86 nm for membrane containing 1 wt % of ZnO. While, surface roughness increased and reached to 115.5 and 122.4 nm for MMMs having 3 and 5 wt % of ZnO. Gas separation properties of PSf/ZnO MMMs were examined and CO2/CH4 selectivity of MMMs containing 3 and 5 wt % of ZnO were 22.29 and 54.29, respectively, in 1 bar feed pressure. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39745.  相似文献   

9.
Interfacial void‐free mixed‐matrix membranes (MMMs) of polyimide (PI)/zeolite were developed using 13X and Linde type A nano‐zeolites and tested for gas separation purposes. Fabrication of a void‐free polymer‐zeolite interface was verified by the decreasing permeability developed by the MMMs for the examined gases, in comparison to the pure PI membrane. The molecular sieving effect introduced by zeolite 13X improved the CO2/N2 and CO2/CH4 selectivity of the MMMs. Separation tests indicated that the manufactured nanocomposite membrane with 30 % loading of 13X had the highest permselectivity for the gas pairs CO2/CH4 and CO2/N2 at the three examined feed pressures of 4, 8 and 12 atm.  相似文献   

10.
Membrane-based technology is an attractive alternative in terms of CO2 separation. Pebax-based membranes are regarded as potential candidates for CO2 separation due to the favorable interaction between its poly (ethylene oxide) chains with CO2 molecules and inorganic fillers. However, the separation performance for CO2/CH4 mixture is still suffered from the moderate gas permeability and selectivity. To overcome this problem, in this work, amino-functionalized zeolite imidazolate framework (ZIF-7-NH2) nanocrystals were used as fillers to blend with Pebax 1657 for fabricating mixed-matrix membranes (MMMs). XRD, Brunauer–Emmett–Teller (BET), scanning electron microscope, and 1H nuclear magnetic resonance characterization indicated that ZIF-7-NH2 with the highest crystallinity was synthesized. Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and Young's modulus showed that it has good interfacial interaction. Gas separation test results showed that both the CO2 permeability and CO2/CH4 selectivity of the 31 wt% ZIF-7-NH2/Pebax MMMs increased by 80 and 170%, respectively. The improved performance is attributed to the addition of ZIF-7-NH2 nanocrystals and the favorable interfacial interactions between the polymer and ZIF-7-NH2 nanocrystals. Furthermore, the polyvinylidene fluoride supported hollow fiber composite membranes also exhibit the long-term stability for CO2/CH4 separation.  相似文献   

11.
Polymer/nanoparticle mixed matrix membranes (MMMs) is one of the most important topics in gas separation field. In this study, to improve gas separation efficiency, methoxy poly(ethylene glycol) methacrylate (MPEG) was grafted on TiO2 surface and was used for synthesis of poly (methyl methacrylate) (PMMA) MMMs. Gas permeation and separation properties of PMMA/PMPEG-TiO2 MMMs were studied for CO2, CH4, O2, and N2 gases. The results showed that the MMM filled with 5 wt% PMPEG-TiO2 nanoparticle exhibited optimal separation performance with CO2 permeability of 32.48 Barrer and CO2/N2 selectivity of 56.98, which are higher than pure polymer (2.75 Barrer and 36.71).  相似文献   

12.
CO2-selective Pebax/NaY mixed matrix membranes (MMMs) were prepared by incorporating NaY zeolite into Pebax matrix. The morphology, chemical groups, thermal stability, and microstructure of the MMMs were investigated by scanning electron microscope, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction, respectively. The effects of zeolite loading amount, permeation temperature and pressure on the CO2/N2 separation performance of the resultant membranes were studied. The as-prepared MMMs are much superior to the pristine Pebax membranes in terms of permeability and selectivity. The CO2 permeability and CO2/N2 selectivity can respectively reach to 131.8 Barrer and 130.8 for MMMs made by the starting materials containing 40 wt % NaY. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48398.  相似文献   

13.
Accumulation of greenhouse gases in the atmosphere is responsible for increased global warming of our planet. The increasing concentration of carbon dioxide mainly from flue gas, automobile and landfill gas (LFG) emissions are major contributors to this problem. In this work, CO2, CH4 and N2 adsorption was studied on Ceca 13X zeolite by determining pure and binary mixture isotherms using a constant volume method and a concentration pulse chromatographic technique at 40 and 100°C. The experimental data were then compared to the predicted binary behaviour by extended Langmuir model. Results showed that the extended Langmuir theoretical adsorption model can only be applied as an approximation to predict the experimental binary behaviour for the systems studied. Equilibrium phase diagrams were obtained from the experimental binary isotherms. For these systems, the integral thermodynamic consistency tests were also conducted. It was found that Ceca 13X exhibits large CO2/CH4 and CO2/N2 selectivity and could find application in landfill gas purification, CO2 removal from natural gas and CO2 removal from ambient air or flue gas streams. © 2011 Canadian Society for Chemical Engineering  相似文献   

14.
This work deals with the incorporation of deca‐dodecasil 3 rhombohedral (DD3R) zeolite as an inorganic filler into the Pebax®‐1074‐based polymer matrix to enhance the performance of the pure polymeric membrane in CO2/CH4 separation. The membranes were fabricated with different concentrations of DD3R. Separation performances of the membranes were investigated at various feed pressures and temperatures. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC) analysis of the prepared membranes were performed. In the best case, selectivity for CO2/CH4 separation was improved, while the permeability decreased. Membranes with 1 and 5 wt % DD3R were located in the acceptable region beyond the Robeson plot (1991) for CO2/CH4 gas pairs.  相似文献   

15.
《分离科学与技术》2012,47(6):859-866
Binary and ternary component mixed matrix membranes comprised of zeolite 4A and p-nitroaniline (pNA) in the polycarbonate (PC) matrix were prepared and appraised in gas separation. For comparison, homogenous membranes of PC and PC/pNA membranes were also investigated. The membranes were utilized to separate binary mixtures of CO2/CH4, H2/CH4, and CO2/N2. The effect of feed composition on the separation performance of membranes was investigated. Separation factors and ideal selectivities were similar for the PC membrane. A similar trend was also observed with the PC/pNA membrane. The separation factors of the PC/pNA membrane for CO2/CH4 were almost twice as high as those of the PC membrane regardless of the feed composition. The ideal selectivities were, however, higher than separation factors for PC/zeolite 4A and PC/pNA/zeolite 4A membranes. The PC/ pNA/zeolite 4A membrane has separation factors of 18 for 77% CO2/ 23% CH4 mixture, and 40 for 20% CO2/ 80% CH4 mixture, respectively. The separation factors of the mixed matrix membranes depended on the feed composition strongly. The PC/ pNA/zeolite 4A membrane had higher separation factors and lower permeabilities than the PC/zeolite 4A membrane. pNA assisted to eradicate partly the detrimental effects of interfacial voids and improved the molecular sieving effect of zeolite 4A dispersed in the PC.  相似文献   

16.
FAU-type zeolite membranes with different Si/Al ratios were hydrothermally synthesized on the outer surface of a porous α-Al2O3 support tube. The permeances of the membranes to CO2, CH4 and N2 were then measured at 308 K for single-component and equimolar binary systems. The separation properties were dependent on both the Si/Al ratio and the ion-exchange treatment. For single-component systems, a lower Si/Al ratio resulted in the incorporation of a larger number of Na+ ions. For a CO2-CH4 mixture, both CO2 permeances and CO2/CH4 selectivities were approximately half the values obtained for a binary CO2-N2 mixture. The highest selectivities, obtained using the NaX(1) zeolite membrane, were 28 for CO2/CH4 and 78 for CO2/N2. The RbY, RbX(1) and RbX(2) zeolite membranes showed larger CO2 permeances, compared with those of the original Na-type membranes. Ion-exchange with K+ ions was the most effective for the NaY zeolite membrane in that both the CO2 permeance and the CO2/CH4 selectivity were increased.  相似文献   

17.
The linear gradient theory (LGT) of fluid interfaces in combination with the cubic-plus-association equation of state (CPA EOS) is applied to determine the interfacial tensions of (CH4+N2)+H2O and (N2+CO2)+H2O ternary mixtures from 298–373 K and 10–300 bar. First, the pure component influence parameters of CH4, N2, CO2 and H2O are obtained. Then, temperature-dependent expressions of binary interaction coefficient for (CH4+H2O), (N2+H2O) and (CO2+H2O) are correlated. These empirical correlations of pure component influence parameters and binary interaction coefficients are applied for ternary mixtures. For (CH4+N2)+H2O and (N2+CO2)+H2O mixtures, the predictions show good agreement with experimental data (overall AAD~1.31%).  相似文献   

18.
《分离科学与技术》2012,47(8):1261-1271
Membrane composed of PC as base of polymer matrix with different ratio of multiwall carbon nano tubes (MWCNTs) as nanofillers and poly ethylene glycol (PEG) as second polymer was prepared by solution casting method. Both raw-MWCNTs (R-MWCNTs) and functionalized carboxyle-MWCNTs (C-MWCNTs) were used in membrane preparation. The MWCNTs loading ratio and pressure effects on the gas transport properties of membranes were examined in relation to pure He, N2, CH4, and CO2 gases. Results showed that the use of C-MWCNT instead of R-MWCNTs in mixed matrix membranes (MMMs) fabrication with base of PC provides better performance and also it increases (CO2/CH4) and (CO2/N2) selectivities to 27.38 and 25.42 from 25.45 and 19.24, respectively (at 5 wt% of MWCNTs). PEG as the second rubbery polymer was utilized to improve the separation performance and mechanical properties. In blend MMMs, highest (CO2/CH4) selectivity at 2 bar pressure increased to 35.64 for PC/PEG/C-MWCNT blend MMMs which was 27.28 for PC/MWCNTs MMMs at 10 wt%. Increase of feed pressure led to gas permeability and gas pair selectivity improvement in approximately all of membranes. Analysis of mechanical properties showed improvement in tensile modules with the increase of MWCNTs loading ratio and use of PEG in prepared MMMs.  相似文献   

19.
With global appeal to green and efficient utilization of energies, metal‐organic frameworks based mixed matrix membranes are standing out in applications such as gas and liquid separation because of the integration of size/shape selectivity of MOFs with processability and mechanical stability of polymers. In the present work, a novel MIL‐68(Al) (MIL = Material of Institute Lavoisier) based mixed matrix membrane (MMM) was developed by adding porous MIL‐68(Al) into Matrimid for the separation of CO2/CH4 mixture. The MIL‐68(Al)/Matrimid MMM displays a high CO2 permselectivity. For the separation of an equimolar CO2/CH4 mixture at 373 K and 1 bar, the CO2 permeability and the CO2/CH4 selectivity are 284.3 Barrer and 79.0, respectively, which far exceed the Robeson upper bound limit and those of the previously reported MMMs. Both the operation pressure and temperature have great influence to the separation performance of the MIL‐68(Al)/Matrimid MMM. Further, the MIL‐68(Al)/Matrimid MMM shows a high stability in the long‐term separation of CO2/CH4. These properties recommend the MIL‐68(Al)/Matrimid MMM as a promising candidate for the purification of natural gases. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43485.  相似文献   

20.
Carbon hollow fiber membranes derived from polymer blend of polyetherimide and polyvinylpyrrolidone (PVP) were extensively prepared through stabilization under air atmosphere followed by carbonization under N2 atmosphere. The effects of the PVP compositions on the thermal behavior, structure, and gas permeation properties were investigated thoroughly by means of differential scanning calorimetry, thermogravimetric analysis, X‐ray diffraction, and pure gas permeation apparatus. The experimental results indicate that the transport mechanism of small gas molecules of N2, CO2, and CH4 is dominated by the molecular sieving effect. The gas permeation properties of the prepared carbon membranes have a strong dependency on PVP composition. The carbon membranes prepared from polymer blends with 6 wt % PVP demonstrated the highest CO2/CH4 and CO2/N2 selectivities of 55.33 and 41.50, respectively. © 2011 American Institute of Chemical Engineers AIChE J, 58: 3167–3175, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号