首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Si含量对TiAlSiN纳米复合涂层的微观结构和力学性能的影响   总被引:3,自引:0,他引:3  
采用不同Si含量的TiAlSi复合靶,在Si基底片上用射频磁控溅射工艺沉积了TiAlSiN纳米复合涂层,采用X射线衍射仪(XRD)、高分辨透射电子显微镜(HRTEM)和纳米压痕技术研究了Si含量对TiAlSiN涂层的微观结构和力学性能的影响.结果表明:TiAlSiN涂层内部形成了Si3N4界面相包裹TiAlN纳米等轴晶粒的纳米复合结构.随着Si含量的增加,TiAlSiN涂层的结晶程度先增加后降低,涂层内部的晶粒尺寸先减小后趋于平稳,涂层的力学性能先升高后降低.当Si与TiAl原子比为3∶22时获得的最高硬度和弹性模量分别为37.1GPa和357.3 GPa.  相似文献   

2.
采用磁控溅射法在单晶硅(100)和304不锈钢基底上沉积不同Mo含量的Zr1-xMoxN(x=0.05,0.14,0.42,0.52)复合膜,采用X射线衍射仪、纳米压痕仪(CSM)、摩擦磨损试验机、扫描电镜和能谱仪研究复合膜的显微结构、力学性能及摩擦性能。结果表明:Zr1-xMoxN复合膜以fcc(Zr,Mo)N结构为主,随x增大,薄膜中会出现fcc Mo2N相。复合膜的硬度从28.1 GPa(ZrN)增加至29.6 GPa(x=0.05),x继续增加,硬度逐渐降低。室温下,薄膜的摩擦因数由0.69(ZrN)降低至0.44(x=0.14),x继续增加摩擦因数略有增加。当温度高于100℃时,Zr0.58Mo0.42N复合膜的摩擦因数随温度升高先升高后降低,在300℃时达到最大。并讨论了ZrMoN复合膜Magnéli相的作用和自适应机制。  相似文献   

3.
采用非平衡磁控溅射法制备Zr1 xSixN薄膜,利用能谱分析、X射线衍射、扫描电镜、纳米压痕仪和摩擦磨损仪等对薄膜的化学成分、微结构、力学性能及摩擦磨损性能进行研究。结果表明,Zr1 xSixN复合膜呈fcc结构,当x小于0.16时,Zr1 xSixN薄膜沿(200)面择优生长,x大于0.16时,薄膜呈(111)择优取向;随x增大,Zr1 xSixN薄膜的硬度逐渐降低,弹性模量先升高后降低,其中Zr0.96Si0.04N薄膜的弹性模量最大,为317 GPa;随x增大,Zr1 xSixN薄膜的抗氧化性能加强,Zr0.55Si0.45N薄膜在800℃下才氧化。Si的加入对Zr1 xSixN薄膜的摩擦性能影响不大。  相似文献   

4.
采用JGP-450复合型高真空多靶磁控溅射设备制备(Nb1-x,Vx)N(x=0,0.08,0.12,0.16,0.19)复合膜。利用X射线衍射仪(XRD)、扫描电镜(SEM)、纳米压痕仪及摩擦磨损仪等对复合膜的微结构、力学性能与摩擦性能进行表征。结果表明:NbN薄膜的择优取向为(200),在NbN薄膜中添加元素V后,薄膜的择优取向转变为(111),但x增大到0.19时薄膜又呈(200)择优取向;随V元素含量增加,(Nb,V)N复合膜的硬度和弹性模量均先增大后减小,x=0.12时,显微硬度和弹性模量都达到最大,分别为26.88 GPa和328.24 GPa;随温度从室温升高到700℃,(Nb0.88,V0.12)N复合膜的摩擦因数逐渐降低。(Nb0.88,V0.12)N复合薄膜具有良好的综合性能。  相似文献   

5.
采用磁控溅射仪制备一系列不同Al含量的W1-xAlxN薄膜,系统研究该复合膜的微结构、力学性能、高温抗氧化性能及摩擦磨损性能。结果表明,W1-xAlxN薄膜为面心立方结构,呈(200)择优生长。当Al含量(原子分数,下同)为32.4%时,复合膜中形成h-AlN相,且随Al含量增加,h-AlN含量增多。随Al含量增加,薄膜硬度先升高后降低,Al含量为32.4%时薄膜硬度最大,约为37GPa。随Al含量增加,复合膜在室温下的摩擦因数和磨损率均先减小后增大,Al含量为32.4%时达到最小值,分别为0.3和0.9×10-8mm3/(N·mm)。复合膜摩擦因数随温度升高先增大后减小,而磨损率随温度升高逐渐增大,800℃下W0.676Al0.324N薄膜的摩擦因数和磨损率分别为0.32和8.2×10-8mm3/(N·mm)。与W2N薄膜相比,W1-xAlxN薄膜的高温抗氧化性能和摩擦磨损性能显著提高。  相似文献   

6.
利用脉冲磁控溅射法分别在工业纯钛TA2表面和高能喷丸(HESP)工业纯钛TA2表面沉积Ti N薄膜,采用扫描电镜(SEM)、X射线衍射仪(XRD)分析Ti N薄膜的形貌、晶体结构,采用划痕仪、纳米压痕仪测量Ti N薄膜的膜基结合力、硬度和弹性模量,研究TA2基材HESP对Ti N薄膜生长和力学性能的影响。结果表明:在脉冲磁控溅射条件下,基材HESP可改变Ti N薄膜生长择优取向,原始基材表面Ti N薄膜为(200),(220)晶面共同择优生长,而HESP 20 min基材表面(200)面择优取向十分明显;基材HESP可改变Ti N薄膜生长方式,原始基材表面Ti N薄膜为混合生长,HESP基材表面薄膜变成层状生长,使薄膜更致密;基材HESP可提高Ti N薄膜膜基结合力,原始态基材表面Ti N薄膜结合力为21.4 N,HESP 20 min基材表面Ti N薄膜结合力达到42.3 N,提高了约一倍;基材HESP可以提高Ti N薄膜抵抗塑性变形能力,且原始基材表面Ti N薄膜硬度和弹性模量最小,分别为30.1,343.6 GPa,HESP 20 min基材表面Ti N薄膜硬度达到35.1 GPa,弹性模量达到347.9 GPa。  相似文献   

7.
利用磁控溅射方法在单晶硅基片上制备出不同Al含量AlCN非晶薄膜,随后分别在700℃和1000℃进行真空退火热处理.使用X射线衍射仪和高分辨透射电镜研究了沉积态和退火态薄膜的组织和微观结构,用纳米压痕仪测试硬度和弹性模量.结果表明,退火态薄膜组织和微观结构强烈依赖于薄膜的Al含量.经1000℃退火后,低Al含量AlCN薄膜没有出现结晶现象,但形成了分层;高Al含量AlCN薄膜中,退火促使AlN纳米晶的生成,使薄膜形成了非晶包裹纳米晶的复合结构,随着距表面深度的增加,形成的纳米晶密度和尺寸均有减小的趋势.随着退火温度的升高,AlCN薄膜的硬度和弹性模量均降低;而对于高Al含量AlCN薄膜,由于形成了纳米复合结构,硬度和弹性模量下降幅度减少.  相似文献   

8.
采用射频反应磁控溅射技术制备一系列不同W含量的TiWN复合膜。利用X射线衍射仪、纳米压痕仪、摩擦磨损仪等对TiWN复合膜微结构、力学性能和摩擦性能进行表征。结果表明:当W含量为10.19%时,TiWN复合膜呈fcc结构的TiWN相和Ti相双相结构;当W含量为25.42%时,复合膜中除TiWN相和Ti相,还出现了Ti2N新相;而当W含量为35.29%时,Ti相消失,W2N和β-W新相生成;当W含量增加到46.91%时,薄膜由TiWN,Ti2N,W2N和β-W相组成。随W含量的增加,薄膜硬度先升高后降低,室温摩擦因数和磨损率先减小后增大。W含量为35.29%时,硬度达到最大值,为30.67 GPa,室温摩擦因数和磨损率达到最小值,分别为0.531和3.662×10-8 mm2N-1。随温度升高,薄膜的摩擦因数先增大后减小,当温度升至800℃时,摩擦因数降至最低,为0.397。  相似文献   

9.
用Ar气和N2气分别作为溅射气体和反应气体,采用射频反应磁控溅射法,通过调节工作气体(Ar气与N2气的混合气体)中N2的含量(体积分数)φ(N2),在硅(100)衬底上制备一系列六方结构AlN多晶薄膜,利用X射线衍射(XRD)、扫描电镜(SEM)、原子力显微镜(AFM)和纳米压痕仪等对薄膜特性进行测试与分析。结果表明,φ(N2)对AlN薄膜的择优取向、结晶性、沉积速率与力学性能的影响都十分显著,对薄膜的微观结构和表面粗糙度也有一定影响:随φ(N2)增大,薄膜的厚度和沉积速率逐渐减小,结晶性也发生显著变化;较高的φ(N2)有利于AlN薄膜沿(002)晶面择优生长;φ(N2)对AlN薄膜的硬度影响较大,而对弹性模量影响较小。实验制备的AlN薄膜具有良好的纳米力学性能,硬度平均值在12.0~29.3 GPa之间,弹性模量平均值在184.0~209.8 GPa之间。  相似文献   

10.
采用非平衡反应磁控溅射法制备了TaAgN复合膜。利用X射线衍射仪、CSM纳米压痕测试仪和摩擦磨损测试了复合膜的显微结构、力学性能和摩擦性能。结果显示,TaAgN复合膜由面心立方结构的TaN相和底心斜方结构的Ta4N相组成。随着Ag靶功率的增加,硬度H、弹性模量E、弹性恢复We和H3/E2值均呈先升高后降低的趋势,最大值分别为34 GPa,394 GPa,57%和250 MPa。随着Ag靶功率的增加,TaAgN复合膜室温下的平均摩擦因数呈降低趋势。当Ag靶功率为25 W时,随着温度的升高,TaAgN复合膜的平均摩擦因数逐渐减小。  相似文献   

11.
采用JGP-450复合型高真空多靶磁控溅射设备,制备不同W含量的(V,W)N复合膜。利用X射线衍射仪、扫描电镜、纳米压痕仪及摩擦磨损仪分别对(V,W)N复合膜的显微结构、力学性能及摩擦性能进行表征。结果表明:(V,W)N复合膜主要由面心立方结构VN相和六方结构V2N相组成;(V,W)N复合膜的显微硬度呈先增大后减小的趋势,而摩擦因数与之相反,当W含量x(W)为26.67%时,(V,W)N复合膜显微硬度达到最大值25.1 GPa,同时平均摩擦因数达到最小值0.323 8,并讨论了W含量对性能的影响机理。  相似文献   

12.
利用直流磁控溅射方法制备了Fe/Cu纳米多层膜,使用扫描电子显微镜(SEM)、薄膜应力分布测试仪和纳米压痕技术研究了不同周期结构Fe/Cu纳米多层薄膜的内应力及其纳米力学性能.在Fe/Cu纳米多层薄膜中,由于铁和铜的结构和本征性能的差异,形成多层膜结构后存在张应力,其张应力在周期T=10时达到910.08 MPa,对应的纳米硬度为12.3 GPa.随着多层薄膜调制周期数T的增加而内应力逐渐降低,纳米硬度和弹性模量随着张应力缓释也出现下降.根据纳米薄膜内应力对其力学性能的影响,探讨了内应力与薄膜纳米力学性能的相关性.  相似文献   

13.
采用多靶磁控溅射技术,制备一系列不同V含量的TaVCN复合膜。利用X射线衍射仪、纳米压痕仪和高温摩擦磨损仪研究该复合膜的微结构、力学性能和摩擦磨损性能。结果表明, TaVCN复合膜为面心立方和底心斜方的双相结构。随V含量增加,复合膜的硬度先升高后降低,当V原子分数为26.85%时,复合膜的硬度达到最大值,为31.7 GPa。室温下随V含量增加,复合膜的摩擦因数和磨损率均先减小后增大,V原子分数为32.60%时,摩擦因数达到最小值,为0.213;V原子分数为26.85%时,磨损率达到最小值,为2.1×10?7 mm2/N。随温度升高,复合膜的摩擦因数逐渐减小,磨损率逐渐增大。并对不同温度下 TaVCN 和 TaCN 复合膜的摩擦磨损性能进行了讨论。  相似文献   

14.
采用磁过滤阴极真空弧技术(FCVA),以金属Zr为阴极靶,通入不同流速的C_2H_2和N_2气体(两者比例保持为1∶1),在单晶Si(100)晶面上制备nc-ZrCN/a-CN_x纳米复合薄膜。采用扫描电镜(SEM)、X射线衍射(XRD)、透射电镜(TEM)、X射线电子能谱(XPS)和拉曼散射能谱(Raman)多种材料分析技术研究薄膜的成分和结构。实验结果表明:薄膜是由两种相结构组成,分别为ZrCN纳米晶相(nc-ZrCN)和非晶相(a-CN_x);结构是由平均晶粒尺寸为5~12nm的nc-ZrCN弥散于非晶相a-CN_x中。纳米晶相nc-ZrCN中键态为Zr-C和Zr-N,非晶相aCN_x中键态为C-C,C=C和C-N。利用表面形貌仪(SM)和纳米力学探针(Nanotest)测量了薄膜的内应力、硬度和约化模量等力学性能。分析发现:薄膜中sp3和sp2的含量比(sp3/sp2)越大,内应力越大,内应力最大可达11.5GPa。ZrCN纳米晶粒细化和高的sp3/sp2含量比会提高薄膜的硬度和约化模量。当气流在15~35ml·min~(-1)范围时,薄膜具有很高的硬度和约化模量。当气流为25ml·min~(-1)时,硬度可达35.1GPa,约化模量达297.2GPa。  相似文献   

15.
通过真空电弧熔炼法制备了Cu/Ni_3Ti原位复合材料。采用X射线衍射仪、扫描电子显微镜、显微硬度计和纳米压痕仪分别测试了Cu/Ni_3Ti原位复合材料的相组成、微观组织形貌、显微硬度和弹性模量。结果显示,Ni_3Ti相在铜基体中呈针状分布,且铸锭边缘与心部平均晶粒直径分别约为1.74和249μm。Cu/Ni_3Ti原位复合材料在时效温度为550℃时的强化效果最佳,此时铜基体与Ni_3Ti相的显微硬度最大值分别达到了174和209。在热处理后,Ni_3Ti相的最大硬度和弹性模量分别达到10.5 GPa和249.7 GPa,远高于Cu基体,Ni_3Ti相是一种理想的增强相。  相似文献   

16.
采用非平衡磁控溅射技术在Q235钢和单晶硅基片上制备了TiAlN薄膜,并利用场发射扫描电镜(FESEM)、纳米力学探针、划痕测试仪对薄膜的微观组织结构和力学性性能进行研究;采用盐雾试验和电化学极化测试技术研究了薄膜在含Cl-环境中的腐蚀行为与电化学特性。结果表明,随着N_2流量的升高,TiAlN薄膜的硬度和弹性模量先升高后迅速降低,当N2流量为10sccm时,薄膜具有最高的硬度和结合力,分别为30.7GPa和44.2N。盐雾试验240h后,N_2流量为10sccm时的TiAlN薄膜表面腐蚀最轻微,表现出了良好的抗盐雾腐蚀性能;电化学测试结果表明,在3.5%NaCl溶液中,N2流量为10sccm时Ti Al N薄膜腐蚀电流密度最小,仅为1.38×10~(-4)m Acm·~(-2),,约为N2流量为16sccm时薄膜的1/4,表现出优异的耐腐蚀性能。  相似文献   

17.
在不同溅射氮分压条件下,采用射频反应磁控溅射技术于单晶硅片表面制备了Zr-Nb-N薄膜。EDS、TEM和XRD分析表明,随着氮分压的升高,薄膜中N含量上升,Nb含量下降,细晶组织粗化,同时单一相Zr-Nb-N固溶体出现NbN与ZrN两相分离。采用四探针电阻测试仪和显微硬度计分别测量了薄膜的方阻和显微硬度,结果表明随着氮分压的升高,薄膜的方阻降低,显微硬度先升高后降低。  相似文献   

18.
以Y2 O3 和Al2 O3 纳米陶瓷粉体作为烧结助剂 ,液相烧结非晶纳米Si3 N4陶瓷粉体 ,研究了不同温度下烧结体的结晶与相变行为。 1 5 0 0℃烧结 ,烧结体为非晶与晶体混合态 ,结晶相主要为α Si3 N4和 β Si3 N4,结晶度达到 70 %。温度超过 1 6 0 0℃以后 ,烧结体已经完全结晶 ,为 β Si3 N4和Si2 N2 O双相陶瓷。当温度达到1 6 5 0℃ ,Si2 N2 O的体积分数达到最大值 ,说明烧结体中的O2 与Si3 N4已经反应完全。烧结温度超过 1 70 0℃时 ,Si2 N2 O的体积分数开始减小 ,烧结体中没有SiO2 出现 ,证明反应 2Si3 N4(s) +1 5O2 (g) =3Si2 N2 O(s) +N2(g)为可逆反应。 1 6 0 0℃烧结体的典型结晶形貌分析表明 :粒径尺寸基本分布在两个区域 ,大部分较大晶粒粒径在 1 5 0~ 2 5 0nm之间 ,小部分晶粒粒径 <1 0 0nm ,个别晶粒的长径比达到 1 5。  相似文献   

19.
采用非平衡磁控溅射技术在Q235钢基体上制备了TiAlN薄膜,研究了沉积工艺参数对薄膜微观形貌、力学性能及耐腐蚀性能的影响规律,通过扫描电镜、纳米力学探针、划痕测试仪对薄膜的微观形貌和力学性能进行表征,并利用盐雾试验和电化学极化测试研究了薄膜在含Cl-环境中的腐蚀行为。结果表明,随着N_2流量的升高,TiAlN薄膜的硬度和结合力先升高后降低,当N_2流量为10sccm时,薄膜具有最高的硬度和结合力,分别为30.7GPa和44.2N,其耐腐蚀性能最优。随着Al靶功率的增加,薄膜的硬度和结合力先增大后减小,当Al靶功率为90W时,薄膜的硬度和结合力达到了最大值,分别为28.6GPa和38.4N,具有最佳的抗腐蚀性能。随着基体温度的升高,薄膜的硬度和结合力逐渐增大,基体温度低于300℃时,增大幅度较明显,基体温度高于300℃时,二者增加幅度趋于平缓,薄膜表现出优异的耐腐蚀性能。  相似文献   

20.
用内外靶配置的多弧-磁控溅射技术在单晶硅和硬质合金上制备Ti-Si-N纳米复合涂层,研究衬底偏压和Si靶溅射电流对涂层结构和力学性能的影响,经过实验参数优化,在偏压为-150 V、Si靶电流为15 A的沉积条件下,得到Si的原子分数为6.3%的Ti-Si-N纳米复合涂层。X射线衍射、X射线光电子能谱和透射电镜分析表明,涂层中含有晶态TiN和非晶Si3N4,纳米尺寸的TiN颗粒镶嵌在非晶Si3N4基体结构中。纳米硬度计测试表明涂层的显微硬度为40 GPa,摩擦学实验表明其摩擦因数为0.89,可满足Ti-Si-N纳米复合涂层的工业化应用要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号