首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《聚合物改性》是高分子材料专业的一门实用性强且有着重要学科意义的专业课。为了制备出理想的经济的综合性能优异的高分子材料,聚合物改性是当前研究的热点之一,聚合物共混改性又是最方便和最灵活的方法。共混物间由于其热力学不相容性而获得非均相体系,此体系中必然存在着相形态。粘弹性与共混物相形态有着直接关联,且粘弹性具有强烈的时间和温度依赖性。本文将从共混物组分、温度、时间和外场力因素分析对相形态与粘弹性的影响,进而解析共混物相形态与粘弹性的相关性,探索课堂教学的授课内容与方式。  相似文献   

2.
深入了解聚合物共混物和合金的流变性能,对控制聚合物的形态和优化加工条件是很重要的。聚合物共混在熔化状态通常会生成两个或两个以上的相,这可能是由不同聚合物的低混合熵引起的一种现象。研究人员刘具有不同相对分子质量分布的高密度聚乙烯(HDPE)共混物和聚苯乙烯/聚丙烯共混物的流变性能进行了试验性研究。  相似文献   

3.
近年来通过共混对聚合物进行改性成为改进最终产品性能的重要方法。聚合物共混物的最终性能在很大程度上依赖于相的形态,而相形态又取决于聚合物的溶解度参数和界面键的数目。  相似文献   

4.
《塑料》2015,(4)
综述了超临界CO2制备聚合物及其共混物的应用现状,主要包括超临界CO2降低单一聚合物和聚合物共混物的黏度、改变聚合物共混物相行为及其他性能的应用。超临界CO2降低聚合物熔体黏度可以使聚合物的成型温度降低,提高其加工性。在聚合物共混物中引入超临界CO2,能改变聚合物共混物微观相形态,分散相尺寸减小,进而达到改变其他性能的目的。  相似文献   

5.
介绍了流场下不相容聚合物共混物分散相形态及演变研究进展,并指出这是获得性能优异共混材料的关键。在流场下,不相容共混物分散相尺寸由破碎和凝聚等动力学过程决定。鉴于模型的理想化,早期研究主要针对牛顿流体,且分散相的变形、破碎和凝聚等理论均发源于此。对于聚合物共混物,其在本质上与牛顿流体有很多相似之处,然而,独特黏弹性质却是影响其相形态的重要因素。最后,对一些预测分散相尺寸的理论模型进行了总结,并重点讨论了分散相浓度、聚合物弹性、增容和填料等因素对流场下分散相形态的影响。  相似文献   

6.
韦良强  于杰  秦舒浩  何敏 《塑料》2012,41(5):1-5
综述了超声对聚合物挤出加工性能、化学反应、聚合物共混物相形态、结晶性聚合物的结晶行为、聚合物共混物力学性能等的影响。提出超声挤出技术实现工业化需解决的问题,展望了超声挤出技术在聚合物熔体反应挤出中的研究及应用前景。  相似文献   

7.
制备了聚酰胺(PA)6/马来酸酐(MAH)接枝三元乙丙橡胶(EPDM)(EPDM-g-MAH)/高密度聚乙烯(HDPE)三元共混物,采用扫描电子显微镜观察了三元共混物的相形态,研究了注塑过程的二次剪切流动对该三元共混物相形态的影响,以及三元共混物相形态对其力学性能的影响。结果表明:二次剪切流动有利于PA 6/EPDM-g-MAH/HDPE体系向热力学最稳定的壳核结构发生转变。与PA 6/EPDM-g-MAH二元共混物相比,该三元共混物的力学性能得到较大改善,w(EPDM-g-MAH)为15%时,其Izod缺口冲击强度达85.83 kJ/m2,是纯PA 6的9倍,是同等橡胶含量的PA 6/EPDM-g-MAH二元共混物的2倍。  相似文献   

8.
尼龙1212/聚苯乙烯共混物的流变特性与相形态研究   总被引:1,自引:0,他引:1  
采用动态流变法研究了尼龙(PA)1212/聚苯乙烯(PS)共混物的流变特性,通过扫描电子显微镜对共混物的相形态进行了表征.结果表明,在低频率下,当Ps质量分数为20%-60%时,PAl212/PS共混物的储能模量较高且提升较快;在高频率下,共混物的粘弹行为逐渐与纯聚合物的粘弹行为相似.共混物的损耗模量"与两种纯聚合物相差不大.共混物的驰豫过程较为复杂,出现了新的多个驰豫过程.随着PS含量的增大,PA1212/PS共混物的相形态由"海一岛"结构逐渐向共连续相形态转变.  相似文献   

9.
PC/PET共混条件及共混物组成对形态及性能的影响   总被引:1,自引:0,他引:1  
本文探讨了PC/PET熔融共混体系混炼条件对性能的影响,得到了研究范围内最佳混炼条件,深入研究了该条件下共混物的力学性能、耐溶剂性和热性能,得到了性能优良的聚合物合金。与断面形态相结合讨论了共混物的性能与共混物中两相连续程度的对应关系。  相似文献   

10.
综述了纳米无机粒子在聚合物合金中选择性分布的影响因素及纳米无机粒子在聚合物中分散的重要性,重点从相行为、相形态、力学性能、电学性能、流变行为、结晶和熔融行为以及光学性能等方面总结了近年来纳米无机粒子在聚合物共混物中的选择性分布与迁移对以聚合物共混物为基体的纳米复合材料的形态和性能的影响。特别强调了如何利用热力学和动力学因素调控纳米无机粒子在聚合物合金中的分布。  相似文献   

11.
Melt spun drawn fibers were prepared using a ternary blend of PP/PA6/PANI‐complex (polypropylene/polyamide‐6/polyaniline‐complex). Their electrical and mechanical properties were compared to those of binary blend fibers of PP/PANI‐complex. The results of the morphological studies on 55:25:20 PP/PA6/PANI‐complex ternary fibers were found to be in accordance with the predicted morphology for the observed conductivity vs. fiber draw ratio. The scanning electron microscopy (SEM) micrographs of the ternary blend illustrated at least a three‐phase morphology of a matrix/core‐shell dispersed phase style, with widely varying sizes of droplets. This resulted in a dispersed morphology that, in some parts of the blend, approached a bicontinuous/dispersed phase morphology due to coalescence of the small droplets. The matrix was PP and the core‐shell dispersed phase was PA6 and PANI‐complex, in which a part of the PANI‐complex had encapsulated the PA6 phase and the remaining was solved/dispersed in the PA6 core, as later confirmed by X‐ray mapping. When the ternary blend fibers were compared to the binary fibers, the formers were able to combine better conductivity (of an order of 10?3 S cm?1) with a greater tensile strength only at a draw ratio of 5. This indicated that the draw ratio is more critical for the ternary blend fibers, because both conductivity and tensile strength depended on the formation of fibrils from the core‐shell dispersed phase of the PA6/PANI‐complex. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

12.
A series of blends of polypropylene (PP)–polyamide‐6 (PA6) with either reactive polyethylene–octene elastomer (POE) grafted with maleic anhydride (POE‐g‐MA) or with maleated PP (PP‐g‐MA) as compatibilizers were prepared. The microstructures and mechanical properties of the blends were investigated by means of tensile and impact testing and by scanning electron microscopy and transmission electron microscopy. The results indicated that the miscibility of PP–PA6 blends was improved with the addition of POE‐g‐MA and PP‐g‐MA. For the PP/PA6/POE‐g‐MA system, an elastic interfacial POE layer was formed around PA6 particles and the dispersed POE phases were also observed in the PP matrix. Its Izod impact strength was four times that of pure PP matrix, whilst the tensile strength and Young's modulus were almost unchanged. The greatest tensile strength was obtained for PP/PA6/PP‐g‐MA blend, but its Izod impact strength was reduced in comparison with the pure PP matrix. © 2002 Society of Chemical Industry  相似文献   

13.
研究了4种不同共混工艺对PA6/POE-g-MAH/CaCO3三元复合体系韧性的影响。通过不同的加料顺序和挤出次数对PA6、POE-g-MAH、CaCO3进行熔融共混后挤出注塑,并对其进行力学性能测试和SEM观察。研究结果表明:形成"核壳"结构界面的材料的韧性最高。不同制备工艺下,POE-g-MAH/CaCO3先挤出,再与PA6挤出,注塑得到的共混物的冲击强度最高但弹性模量最低;PA6/CaCO3挤出,再与POE-g-MAH挤出,注塑得到的共混物韧性次之,但弹性模量最高;PA6/POE-g-MAH/CaCO3PP一起挤出,注塑得到的共混物韧性再次;PA6与POE-g-MAH挤出,再与CaCO3挤出,注塑得到的共混物韧性最差。  相似文献   

14.
T.S. Omonov  C. Harrats  G. Groeninckx 《Polymer》2005,46(26):841-12336
Phase morphology development in ternary uncompatibilized and reactively compatibilized blends based on polyamide 6 (PA6), polypropylene (PP) and polystyrene (PS) has been investigated. Reactive compatibilization of the blends has been performed using two reactive precursors; maleic anhydride grafted polypropylene (PP-g-MA) and styrene maleic anhydride copolymer (SMA) for PA6/PP and PA6/PS pairs, respectively. For comparison purposes, uncompatibilized and reactively compatibilized PA6/PP and PA6/PS binary blends, were first investigated. All the blends were melt-blended using a co-rotating twin-screw extruder. The phase morphology investigated using scanning electron microscope (SEM) and selective solvent extraction tests revealed that PA6/PP/PS blends having a weight percent composition of 70/15/15 is constituted from polyamide 6 matrix in which are dispersed composite droplets of PP core encapsulated by PS phase. Whereas, a co-continuous three-phase morphology was formed in the blends having a composition of 40/30/30. This morphology has been significantly affected by the reactive compatibilization. In the compatibilized PA6/(PP/PP–MA)/(PS/SMA) blends, PA6 phase was no more continuous but gets finely dispersed in the PS continuous phase. The DSC measurements confirmed the dispersed character of the PA6 phase. Indeed, in the compatibilized PA6/(PP/PP–MA)/(PS/SMA) blends where the PA6 particle size was smaller than 1 μm, the bulk crystallization temperature of PA6 (188 °C) was completely suppressed and a new crystallization peak emerges at a lower temperature of 93 °C as a result of homogeneous nucleation of PA6.  相似文献   

15.
A series of polymer blends were designed and manufactured. They are composed of three phases: polypropylene (PP), polyamide-6 (PA6) and polyethylene-octene elastomer (POE) grafted with maleic anhydride. The weight fraction of PA6 was adjusted from 0 to 40% by increments of 10%, and the weight fraction of POE was systematically half that of PA6. The morphology, essentially made of PA6 particles dispersed in the PP matrix, was characterised by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In the extruded plates prepared with the blends, the shape of the dispersed PA6 particles showed an elongated ellipsoidal shape, whose aspect ratio increased somehow with alloying content. The POE modifier was observed both as a thin interlayer (less than 100 nm thickness) at the PP/PA6 interface, and as a few isolated particles. The elastic modulus and yield stress in tension are nearly constant for PP and blends. By contrast, the notched Izod impact strength increases very much with alloying content. This remarkable effect is interpreted in terms of POE interphase cavitation, enhanced plastic shear deformation and resistance of PA6 particles to crack propagation.  相似文献   

16.
In this study, the effects of different parameters on the morphological properties of ternary blends were investigated. Therefore two systems (PET/H‐EVA/PP and PET/L ‐EVA/PP, H‐EVA and L ‐EVA are high and low viscosity, respectively) were prepared by melt mixing process. In all of the blends, poly (ethylene terephthalate) (PET) as the major phase‐ with poly propylene (PP) and two grades of poly (ethyl‐stat‐vinylacetate) (EVA) with different viscosities and subsequently different interfacial interactions was blended. Theoretical models predicted positive spreading coefficient for two grades of EVA and lower free energy for the samples consisting of EVA and PP as the shell and the core phases respectively. With changing core shell ratio, droplet size of samples containing L ‐EVA and H‐EVA increased and decreased, respectively. Subinclusion of shell into the core was observed in some blended samples. In systems containing H‐EVA, by thickening the shell phase; multi core morphology was observed which would be related to the coalescence phenomenon inter the droplets. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The melt rheological properties of binary uncompatibilized polypropylene–polyamide6 (PP–PA6) blends and ternary blends compatibilized with maleic anhydride‐grafted PP (PP–PP‐g‐MAH–PA6) were studied using a capillary rheometer. The experimental shear viscosities of blends were compared with those calculated from Utracki's relation. The deviation value δ between these two series of data was obtained. In binary PP–PA6 blends, when the compatibility between PP and PA6 was poor, the deformation recovery of dispersed PA6 particles played the dominant role during the capillary flow, the experimental values were smaller than those calculated, and δ was negative. The higher the dispersed phase content, the more deformed the droplets were and the lower the apparent shear viscosity. Also, the absolute value of δ increased with the dispersed phase composition. In ternary PP–PP‐g‐MAH–PA6 systems, when the compatibility between PP and PA6 was enhanced by PP‐g‐MAH, the elongation and break‐up of the dispersed particles played the dominant role, and the experimental values were higher than calculated. It was observed that the higher the dispersion of the PA6 phase, the higher the δ values of the ternary blends and the larger the positive deviation. Unlike uncompatibilized blends, under high shear stress with higher dispersed phase content, the PP‐g‐PA6 copolymer in compatibilized blends was pulled out from the interface and formed independent micelles in the matrix, which resulted in reduced total apparent shear viscosity. The δ value decreased with increasing shear stress. Copyright © 2006 Society of Chemical Industry  相似文献   

18.
Shu-Lin Bai  Jean-Marie Hiver 《Polymer》2005,46(17):6437-6446
It has been shown in a previous paper in this series that important dilatation is produced by plastic deformation under tension of neat PP and PP/PA6/POE blends, for which the POE to PA6 concentration ratio equals 1/2. In this work, the detailed mechanisms of this volume change are investigated from electron micrographs (SEM and TEM) obtained in the deformed state. At low alloy content, it is thus observed that dilatation results from decohesion of the PA6 particles from the PP matrix. As the amount of PA6 and POE increases, voids are nucleated preferentially in the thicker POE interphase making a shell around the PA6 particles, and secondarily in isolated POE particles. Unexpectedly, it has been found that the overall volume dilatation decreases with total alloying content. This is interpreted by: (i) the increasing contribution of PA6 that intrinsically deforms with less cavitation than PP, (ii) the post-cavitation rubber-like stretching of POE particles and, (iii) the early formation of a percolating network of shear bands from the diffuse array of voids formed after the yield point. These mechanisms explain the gradual increase of the resistance to impact of the PP/PA6/POE as their alloying content is increased.  相似文献   

19.
在PP/PA6基体中分别添加两种无机纳米粒子(SiO2,TiO2)和5%的接枝POE作为相容剂。采用三种不同的共混工艺制备PP/PA6/纳米粒子复合材料,并对其性能进行了对比分析。通过力学性能测试和SEM照片观测分析了影响复合材料力学性能的因素。结果表明:分步法的制备工艺能够明显提高PP/纳米粒子复合材料的综合力学性能,改善分散相的相容性。并且研究发现:在PP/PA6中添加相同质量分数的纳米TiO2的综合力学性能要优于纳米SiO2。  相似文献   

20.
Superior impact properties were obtained when maleic anhydride grafted styrene ethylene/butylene styrene block copolymer (SEBS-g-MAH) was used as a compatibilizer in blends of polyamide 6 (PA 6) and isotactic polypropylene (PP), where polyamide was the majority phase and polypropylene the minority phase. The optimum impact properties were achieved when the weight relation PA:PP was 80:20 and 10 wt% SEBS-g-MAH was added. The blend morphology was systematically investigated. Transmission electron microscopy (TEM) indicated that the compatibilizer forms a cellular structure in the PA phase in addition to acting as an interfacial agent between the two polymer phases. In this cellular-like morphology the compatibilizer appears to form the continuous phase, while polyamide and polypropylene form separate dispersions. In microscopy, PA appeared as a fine dispersion and PP as a coarse dispersion. The mechanical properties indicated that in fact PA, too, is continuous, and the blend can be interpreted as possessing a modified semi-interpenetrating network (IPN) structure with separate secondary dispersion of PP. The coarser PP dispersion plays an essential role in impact modification. Binary blends of the compatibilizer and one blend component were also investigated separately. The same cellular structure was observed in the binary PA/SEBS-g-MAH blends, and SEBS-g-MAH again appeared to form the continuous phase when the elastomer concentration was at least 10 to 20 wt%. By contrast, in PP/SEBS-g-MAH only conventional dispersion of elastomeric SEBS-g-MAH was observed up to 40 wt% elastomer. Impact strength was improved and the elastic modulus was lowered in both PA/SEBS-g-MAH and PP/SEBS-g-MAH blends when the elastomer content was increased. The changes in modulus indicate that the semi-IPN-like structure is formed in the binary PA/SEBS-g-MAH blends as well as in the ternary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号