首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
江宏玲  肖军  沈来宏 《动力工程》2012,32(5):408-413,419
以稻秸秆为研究对象,利用Aspen Plus软件建立了串行流化床生物质气化制取合成气合成二甲醚(DME)的模型,研究了不同气化温度、水蒸气与生物质的质量比(mS/mB)、DME合成温度、合成压力、吸收塔操作压力及吸收剂与DME的配比(nA/nD)对合成工艺的影响.结果表明:对于采用串行流化床生物质水蒸气气化技术制取DME的一步法合成系统,建议气化温度取750℃左右,mS/mB取0.3,DME合成温度取260℃,合成压力取4MPa,用水作吸收剂,吸收塔的操作压力控制在3~4MPa,nA/nD取0.5;在此工况下,1kg生物质(干燥基)所能产生的二甲醚物质的量约为6.1mol.  相似文献   

2.
以生物质水蒸气气化制取燃气和富氢气体为研究对象,利用Aspen Plus软件建立其过程仿真模型并进行验证。研究气化温度、气化压力、水蒸气与生物质配比(S/B)对气化气成分、高位发热量、值及系统能量效率、效率的影响,并对比有、无热量回收两种情况下的能量利用效率。研究结果表明:较低的气化温度、S/B及较高的气化压力可提高气化气热值,有利于制取燃气;适中的温度(750~850℃)、常压和较高的S/B有利于制取富H_2气体,但S/B的增大会显著降低系统能量效率和效率,故S/B不宜超过1.3;系统的能量效率高于对应的效率,热量回收对于提高系统能量效率和效率有重要作用。  相似文献   

3.
生物质气流床气化制取合成气的试验研究   总被引:3,自引:0,他引:3  
利用一套小型生物质层流气流床气化系统,研究了稻壳、红松、水曲柳和樟木松4种生物质在不同反应温度、氧气/生物质比率(O/B)、水蒸汽/生物质比率(S/B)以及停留时间下对合成气成分、碳转化率、H2/CO以及CO/CO2比率的影响.研究表明4种生物质在常压气流床气化生成合成气最佳O/B范围为0.2~0.3(气化温度.1300℃),高温气化时合成气中CH4含量很低,停留时间为1.6s时其气化反应基本完毕.加大水蒸汽含量可增加H2/CO比率,在S/B为0.8时H2/CO比率都在1以上,但水蒸汽的过多引入会影响煤气产率.气化温度是生物质气流床气化最重要的影响因素之一.  相似文献   

4.
纤维素废弃物稀酸水解残渣制氢研究   总被引:1,自引:0,他引:1  
李文志  颜涌捷  任铮伟  黄秒 《太阳能学报》2007,28(11):1248-1252
对纤维素废弃物水解残渣催化气化制氢进行了研究,考察了气化温度、催化温度、催化剂颗粒粒径和S/B (单位时间内进入气化器中水蒸汽质量与生物质质量之比)4个主要参数对气体组成和氢气产率的影响并和以木屑为原料催化气化制氢进行了比较。在试验范围内提高气化温度、催化温度和S/B的值以及减小催化剂颗粒粒径对提高氢产率有利,其中气化温度和S/B对提高氢产率影响较大。气化温度在800~850℃内较为理想,催化剂颗粒的适宜粒径为2~3mm,S/B取1.5~2.0较佳;和木屑制氢相比,使用水解残渣制取的气体中CO和CO_2的体积百分比小,H_2/CO的值大,氢气含量高,有利于后续处理,且氢产率大,对制氢有利。  相似文献   

5.
邓玥  仲兆平 《太阳能学报》2022,43(4):468-473
以生物质费托合成制取液体燃料工艺为基础,利用Aspen Plus软件建立其流程的仿真模型,研究各单元操作参数变化对航空煤油产量的影响,并在最优工况下对系统进行能量分析.结果表明:生物质气化单元对航油产量的影响主要来自产物合成气中H2与CO物质的量之比(H2/CO),最优操作条件为T=750℃,P=0.1 MPa,进口水...  相似文献   

6.
串行流化床生物质气化制氢试验研究   总被引:2,自引:0,他引:2  
基于串行流化床生物质气化技术,以水蒸气为气化剂,在串行流化床试验装置上进行生物质气化制氢的试验研究,考察了气化反应器温度、水蒸气/生物质比率(S/B)对气化气成分、烟气成分和氢产率的影响。结果表明:在燃烧反应器内燃烧烟气不会串混至气化反应器,该气化技术能够稳定连续地从气化反应器获得不含N_2的富氢燃气,氢浓度最高可达71.5%;气化反应器温度是影响制氢过程的重要因素,随着温度的升高,气化气中H_2浓度不断降低,CO浓度显著上升,氢产率有所提高;S/B对气化气成分影响较小,随着S/B的增加,氢产率先升高而后降低,S/B的最优值为1.4。最高氢产率(60.3g H_2/kg biomass)是在气化反应器温度为920℃,S/B为1.4的条件下获得的。  相似文献   

7.
为提高生物质的利用效率,提出了生物质化学链气化氢-电-甲醇多联产工艺,采用CaO吸附强化Fe_2O_3生物质化学链气化过程,生产高纯度氢气和适用于甲醇合成的高氢碳比合成气。选用木屑作为生物质,利用Aspen Plus软件进行过程模拟和热力学分析,以合成气的氢碳比(H/C)、系统氢气效率、净电效率、甲醇效率和总效率作为评价指标,讨论了水蒸气与生物质质量比(S/B)、氧载体与生物质质量比(M_(Ca)/B、M_(Fe)/B)和气化压力(p_(CLG))对系统性能的影响。结果表明:在S/B=0.4、M_(Ca)/B=1、M_(Fe)/B=0.5和p_(CLG)=0.8 MPa时,系统性能最优,合成气的H/C为2.09,甲醇效率为41.28%,总效率为59.34%。  相似文献   

8.
在固定床实验台上,对甘油与生物质共水蒸气气化进行实验研究。采用正交实验方法,设计三因素三水平正交试验,考察温度、水流量、甘油/生物质(质量比)这3个因素对玉米芯与甘油混合物共气化制取的气体产物成分组成、气体产率、液体产率、固体产率及气体产物热值的影响。在此基础上对实验数据进行极差分析和方差分析计算,确定所考察因素的显著性、主次地位和各因素水平的优化组合。实验结果表明:影响H_2产率的因素主次顺序为T(温度)S(水流量)G/B(甘油/生物质质量比),优化组合参数为T=750℃,S=2 mL/min,G/B=3:8。气体产物中H_2体积分数为35.8%~62.0%。  相似文献   

9.
赵琳  穆林 《热科学与技术》2021,20(2):178-187
使用Aspen Plus软件对以Fe_2O_3为载氧体的生物质化学链气化系统进行模拟,分析温度、压力、载氧体与生物质摩尔比、水蒸气与生物质摩尔比等因素对合成气制备的影响;对不同生物质的气化条件进行优化;将气化制得的合成气通入M701F燃气轮机中发电,考察系统的发电效率。结果表明:常压下,不同生物质气化的优化温度均在740℃左右,此时制备的合成气冷煤气效率较高;提高反应压力有利于系统热量自平衡,但合成气的冷煤气效率降低;载氧体与生物质摩尔比的优化值与生物质中氧碳摩尔比呈负相关,且达到优化值时,气化环境中氧碳摩尔比在1.25左右;水蒸气通入气化系统后冷煤气效率可提高15.00%~20.00%,主要原因为H_2的产量显著增加,通入水蒸气后的气化环境的氧碳比在1.4左右时,制备合成气的冷煤气效率较高;系统的发电效率在30.00%~37.00%,高于生物质发电效率。  相似文献   

10.
为考察O2/水蒸气和O2/CO2作为气化剂对海藻粉气化特性的影响,在自制的小型生物质气流床气化炉上开展海藻粉在气流床下气化特性试验研究。当氧气/生物质比(O/B)为0.3、气化温度为1200℃时,不同水蒸气/生物质比(S/B=0~1.2)对合成气组成有较大影响,其中H2产量的上升趋势最为明显,S/B=1.2时比单纯氧气气化提高了81.4%。而在O2/CO2气化条件下,由生物质产生的CO2随二氧化碳/生物质比(CO2/B)的增加而下降,当CO2/B=0.9时,H2、CO的产量分别比单纯氧气气化提高了33.9%和75.8%,热值由5521 kJ/m3上升至8576 kJ/m3。结果表明,如果以提高热值为制取合成气的目标时,添加CO2在一定范围内可以达到水蒸气的效果,同时降低了系统能耗及简化了气化设备。  相似文献   

11.
提出一种太阳能驱动生物质气化的动力多联产系统,利用聚光太阳能驱动生物质热化学气化反应,生成的合成气在合成反应单元中被转化为天然气,未反应的合成气直接用于联合循环系统发电.该文对系统进行热力学性能分析,探究了气化温度和水煤气转换单元对系统性能的影响.结果表明系统的一次能源效率为44.63%,产物中合成天然气和发电量之比为...  相似文献   

12.
采用单一流化床二步气化方法,以纯水蒸气为气化剂,在流化床中进行制取氢气的工艺试验。在对试验数据进行分析的基础上,探讨了一些主要参数[如反应器温度、水蒸气/生物质(S/B)、生物质化学成分]对氢产率的影响。分析结果表明:较高的反应温度、S/B以及纤维素和半纤维素含量比较有利于氢的产出。验证试验表明:在反应温度为1000~1050℃,S/B为2.0的条件下,纤维素和半纤维素含量为74.1%的木屑(干基)的氢产率最高,为61.67g/kg。  相似文献   

13.
用Aspen Plus建立了双流化床气化和燃烧模型,对生物质在双流化床中气化及CaO吸收合成气中的CO2过程进行了模拟研究;探讨不同反应条件:气化温度、蒸汽与生物质的质量配比(S/B)以及CaO循环量与生物质的质量配比(Ca/B)对合成气成分的影响,为该类型工业反应器的研发提供了理论依据.模拟分析结果表明:气化温度低于700℃时,CaO能很好地吸收气化过程中产生的CO2并促进平衡反应向产氢方向进行;在温度为650℃及CaO作用下,S/B在0.6~1.7内对合成气成分的影响不大;CaO的加入能够有效地改善合成气的组成,合成气中氢气浓度能达到95%以上,氢气产量达到52 mol/kg.  相似文献   

14.
针对生物质气化技术存在的制氢效率低、焦油含量高等问题,文章提出了一种生物质合成气强化重整提质工艺,并应用HSC Chemistry软件对该工艺进行了热力学分析;研究了反应温度、S/C以及CaO/C对H_2放大率、提质产气各组分浓度等指标的影响。研究结果表明:经过强化重整提质,生物质合成气中焦油组分可全部裂解;吸附剂CaO的加入,可显著提高提质气的H_2放大率和浓度;随着S/C和CaO/C的逐渐增加,H_2的放大率与浓度均逐渐升高,但是,当S/C≥18,CaO/C≥20后,H_2放大率的增幅明显下降,H_2浓度也趋于稳定;当温度为550~600℃,S/C≥18,CaO/C≥20时,H_2放大率可以达到7.5,H_2浓度可以达到98%以上。  相似文献   

15.
串行流化床生物质气化制取富氢气体模拟研究   总被引:8,自引:1,他引:7  
利用串行流化床技术将生物质热解气化和燃烧过程分开,气化反应器和燃烧反应器之间通过灰渣进行热量传递,实现了自供热下生物质气化制氢.利用Aapen Plus软件模拟制氢过程,通过比较单反应器生物质气化的模拟结果和实验结果,验证了模拟研究的可行性.重点研究串行流化床中非催化气化与CaCO3作用下的气化过程,探讨了气化温度、蒸汽与生物质的质量配比(S/B)对制氢的影响,为今后开展生物质气化制氢试验提供了理论参考.结果表明:对应不同气化温度,S/B都存在一个最佳值,且随着温度升高其值减小.当气化温度低于750℃时,添加CaCO3可大幅提高氢产率,气化温度为700℃且在S/B约为0.9时氢产率最大,达43.7 mol·(kg生物质)-1(干燥无灰基),比同温度下非催化气化提高了20.3%.随着气化温度升高,CaCO3促进作用减弱.  相似文献   

16.
文章针对基于LaFeO_(3)载氧体的木屑生物质化学链气化特性,开展了热力学过程模拟与分析,并搭建了固定床实验装置,研究了载氧体添加量(O/B)、气化温度和水蒸气量对合成气品质的影响。热力学分析结果表明:相比传统Fe_(2)O_(3)载氧体,LaFeO_(3)不易与合成气进一步反应,更适合生物质的化学链气化过程,且气化温度升高有利于提升合成气产率,增大LaFeO_(3)添加量也会促进合成气生成,而过多的Fe_(2)O_(3)则会进一步氧化合成气导致产气率下降;添加水蒸气可明显提高合成气中H2占比。实验结果表明,提高反应温度和载氧体添加量能够提高合成气品质,但过量水蒸气反而不利于合成气的转化。在O/B为0.6、气化温度为900℃、水蒸气流量为0.3mL/min的最佳工况下,基于LaFeO_(3)的木屑化学链气化过程的转化效率达到97.09%。研究成果可为生物质固废的能源化利用与推广提供科学依据。  相似文献   

17.
文章对以CO_(2)/H_(2)O为气化剂的生物质气化,生产H_(2)/CO为3∶1的合成气的反应过程进行了热力学分析。研究发现,提高气化温度可以增大H_(2)和CO的总产率,且超过700℃基本没有CH_(4)和C的生成;通过控制气化剂CO_(2)/H_(2)O的通入比例,可以实现H_(2)/CO合成气的定向调控;CO_(2)通入量的增大可以提高CO产率,降低H_(2)/CO为3∶1的合成气的气化温度(临界温度)和所对应的(H_(2)+CO)总产量;H_(2)O通入量的增加可以增大H_(2)产率,提高临界温度和所对应的(H_(2)+CO)总产量。文章拟合出临界温度和所对应的(H_(2)+CO)总产量与CO_(2)和H_(2)O通入量的关系式,为工业生产H_(2)/CO为3∶1的合成气以及后续甲烷化提供理论支持。  相似文献   

18.
生物质富氧——水蒸气气化制氢特性研究   总被引:7,自引:0,他引:7  
以一个鼓泡流化床为反应器,对生物质富氧—水蒸气气化制取富氢燃气的特性进行了一系列的实验研究。通过对试验数据的分析,探讨了主要参数温度、水蒸气/生物质(S/B)和氧浓度对气体成分、氢产率和潜在产氢量的影响。结果表明:在3个主要参数的变化范围内,氢产率和潜在氢产量受温度的影响最大:当温度从700~900℃时,每千克生物质氢产量从18g增加到了53g,每千克生物质潜在氢产量从71.6g增加到了115.6g。  相似文献   

19.
针对双联流化床的热量调控,设计了一种将合成气部分分流至燃烧反应器实现热量平衡的双床气化系统,利用Aspen Plus软件搭建了合成气分流系统模型,对比传统双联流化床系统,评估两种系统在气体组分、合成气热值、有效气体产率以及系统效率方面的差异,研究了气化温度(T)以及水蒸气和生物质质量比r(r=mS/mB)对两种系统热力...  相似文献   

20.
设计并建立了25kW_(th)串行流化床生物质气化反应器,基于此反应器,以赤铁矿石作为载氧体,开展生物质化学链气化实验研究,考察气化反应器温度、S/B、载氧体添加比例对生物质气化特性的影响。当赤铁矿占床料比例高于40%时,该气化装置的气化反应器温度保持平稳,铁矿石载氧体的再生及传热性能优良。燃料反应器出口烟气的成分为H_2、CO_2、CO、CH_4和少量的C_2H_4。随着气化反应器温度升高,气化反应器出口烟气中CO、CH_4和C_2H_4体积分数逐渐降低,相应的CO_2体积分数逐渐升高。随着S/B由0.6升高到1.4,气化反应器出口烟气中H_2和CO_2体积分数逐渐升高,CO、CH_4和C_2H_4体积分数逐渐降低。另外,载氧体添加比例增加,生物质气化反应器出口烟气中CO、H_2、CH_4和C_2H_4体积分数呈减小的趋势,而CO_2体积分数显著增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号