首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 546 毫秒
1.
杨凯  肖军  陶炜 《太阳能学报》2019,40(7):2004-2013
基于Aspen Plus软件对生物质串行流化床气化费托(FT)合成加氢裂化制取航空煤油进行模拟和热力学分析,研究操作参数变化和副产品蜡循环利用对系统性能的影响。结果表明:系统损失主要在气化子系统中,而合成气提质子系统损较小,过程不可逆损是系统损的主要来源,内部损率为88.3%,生物质大分子结构改变是造成不可逆损的主要原因。所有操作参数中水蒸气与生物质质量配比(S/B)对系统效率影响最大,气化合成气H_2与CO物质的量之比(H_2/CO)在1.95~2.00为宜,增大合成温度和压力可提高系统航空煤油产率和效率。对于玉米秆气化FT加氢裂化制取航空煤油系统,推荐的操作参数:气化温度和压力750℃,0.1~0.2 MPa,S/B为0.4~0.5,合成温度240℃,合成压力1.5~2.0 MPa。此时,航空煤油产率最大可达85.3 kg/t,系统效率为54.3%。副产品蜡进行循环利用,可提高航空煤油产率3.9%,并降低最佳S/B为0.3~0.4。  相似文献   

2.
基于欧拉多相流模型,自编化学反应子模型,通过建立生物质流化床气化动力学模型,对某实验室规模的流化床生物质气化炉进行了数值模拟,研究了蒸汽与生物质的质量比(mS/mB)、生物质粒径对产气组分、蒸汽分解率等的影响.结果表明:mS/mB增大,H2体积分数先上升后保持不变,而CO和CH4的体积分数先下降后几乎不变,蒸汽分解率下降;生物质粒径减小有利于气化过程,使CO和H2的体积分数明显上升;计算结果和试验结果基本吻合,表明基于欧拉多相流的动力学模型能对流化床中生物质的气化进行比较准确的模拟.  相似文献   

3.
针对双联流化床的热量调控,设计了一种将合成气部分分流至燃烧反应器实现热量平衡的双床气化系统,利用Aspen Plus软件搭建了合成气分流系统模型,对比传统双联流化床系统,评估两种系统在气体组分、合成气热值、有效气体产率以及系统效率方面的差异,研究了气化温度(T)以及水蒸气和生物质质量比r(r=mS/mB)对两种系统热力...  相似文献   

4.
串行流化床生物质气化制氢试验研究   总被引:2,自引:0,他引:2  
基于串行流化床生物质气化技术,以水蒸气为气化剂,在串行流化床试验装置上进行生物质气化制氢的试验研究,考察了气化反应器温度、水蒸气/生物质比率(S/B)对气化气成分、烟气成分和氢产率的影响。结果表明:在燃烧反应器内燃烧烟气不会串混至气化反应器,该气化技术能够稳定连续地从气化反应器获得不含N_2的富氢燃气,氢浓度最高可达71.5%;气化反应器温度是影响制氢过程的重要因素,随着温度的升高,气化气中H_2浓度不断降低,CO浓度显著上升,氢产率有所提高;S/B对气化气成分影响较小,随着S/B的增加,氢产率先升高而后降低,S/B的最优值为1.4。最高氢产率(60.3g H_2/kg biomass)是在气化反应器温度为920℃,S/B为1.4的条件下获得的。  相似文献   

5.
用水蒸气进行梧桐叶粉体的催化气化实验研究。考察了一些主要参数变量,温度(700~900℃)、生物质粉体粒径(〈1mm)、水蒸气/生物质比(0~2.67)、水蒸气压力(0.02MPa-0.08MPa)等对气化结果的影响。实验结果表明:较高的温度有利手氢的产出,但温度过高会使气体热值下降;生物质粉体粒径的大小对产气组分的分布和产气率均有影响;水蒸气的加入使生物质气化产氢率和产气率显著提高,但水蒸气加入量过多使温度下降,产氢率、产气率和产气热值降低。  相似文献   

6.
采用单一流化床二步气化方法,以纯水蒸气为气化剂,在流化床中进行制取氢气的工艺试验。在对试验数据进行分析的基础上,探讨了一些主要参数[如反应器温度、水蒸气/生物质(S/B)、生物质化学成分]对氢产率的影响。分析结果表明:较高的反应温度、S/B以及纤维素和半纤维素含量比较有利于氢的产出。验证试验表明:在反应温度为1000~1050℃,S/B为2.0的条件下,纤维素和半纤维素含量为74.1%的木屑(干基)的氢产率最高,为61.67g/kg。  相似文献   

7.
使用Aspen plus软件构建了耦合化学链气化的生物质整体气化联合循环发电系统(BIGCC).在常压下研究了气化反应器温度、载氧体与生物质的摩尔比、余热锅炉汽水循环中高压/中压/低压水蒸气压力等因素对耦合系统发电功率和?效率的影响.此外,对耦合系统在气化压力为常压和1.7 MPa下的?损失、?效率和发电效率进行分析,并与常规BIGCC系统的结果对比.研究结果表明,气化反应器温度为750℃,载氧体与生物质摩尔比为0.45时系统性能较好.汽水循环中水蒸气优化后压力为13 MPa/3.25 MPa/0.8 MPa.系统的?损失主要发生在气化系统和燃气轮机系统.总体上,耦合系统的发电效率和?效率均高于常规系统,气化压力的提高有助于改善系统的发电效率和?效率.  相似文献   

8.
以生物质水蒸气气化制取燃气和富氢气体为研究对象,利用Aspen Plus软件建立其过程仿真模型并进行验证。研究气化温度、气化压力、水蒸气与生物质配比(S/B)对气化气成分、高位发热量、值及系统能量效率、效率的影响,并对比有、无热量回收两种情况下的能量利用效率。研究结果表明:较低的气化温度、S/B及较高的气化压力可提高气化气热值,有利于制取燃气;适中的温度(750~850℃)、常压和较高的S/B有利于制取富H_2气体,但S/B的增大会显著降低系统能量效率和效率,故S/B不宜超过1.3;系统的能量效率高于对应的效率,热量回收对于提高系统能量效率和效率有重要作用。  相似文献   

9.
为提高石油焦气化产氢率与产甲烷率,基于Aspen plus软件建立石油焦-水蒸气气化模型,并引入氧化钙添加剂,研究气化温度、压力、CaO/石油焦质量比、H_2O/石油焦质量比对石油焦气化制取富氢气体与富甲烷气体的影响。结果表明,将氧化钙引入石油焦气化系统可以有效提高氢气和甲烷的体积分数,当CaO/石油焦质量比为3时氢气的体积分数可提高20个百分点,当CaO/石油焦质量比为1时甲烷的体积分数可提高15个百分点;增大水蒸气流量有利于制备富氢气体,而不利于制备富甲烷气体,石油焦气化制取甲烷的水蒸气最佳添加量为H_2O/石油焦质量比为1,制取氢气的水蒸气最佳添加量为H_2O/石油焦质量比为10;低温低压有利于制备富氢气体,石油焦-CaO气化制氢的最适宜温度为600~650℃,最适宜压力为0.1MPa;低温高压有利于制备富甲烷气体,石油焦-CaO气化制甲烷的最适宜温度为600~750℃,最适宜压力为1MPa。  相似文献   

10.
串行流化床生物质气化制取富氢气体模拟研究   总被引:8,自引:1,他引:7  
利用串行流化床技术将生物质热解气化和燃烧过程分开,气化反应器和燃烧反应器之间通过灰渣进行热量传递,实现了自供热下生物质气化制氢.利用Aapen Plus软件模拟制氢过程,通过比较单反应器生物质气化的模拟结果和实验结果,验证了模拟研究的可行性.重点研究串行流化床中非催化气化与CaCO3作用下的气化过程,探讨了气化温度、蒸汽与生物质的质量配比(S/B)对制氢的影响,为今后开展生物质气化制氢试验提供了理论参考.结果表明:对应不同气化温度,S/B都存在一个最佳值,且随着温度升高其值减小.当气化温度低于750℃时,添加CaCO3可大幅提高氢产率,气化温度为700℃且在S/B约为0.9时氢产率最大,达43.7 mol·(kg生物质)-1(干燥无灰基),比同温度下非催化气化提高了20.3%.随着气化温度升高,CaCO3促进作用减弱.  相似文献   

11.
邓玥  仲兆平 《太阳能学报》2022,43(4):468-473
以生物质费托合成制取液体燃料工艺为基础,利用Aspen Plus软件建立其流程的仿真模型,研究各单元操作参数变化对航空煤油产量的影响,并在最优工况下对系统进行能量分析.结果表明:生物质气化单元对航油产量的影响主要来自产物合成气中H2与CO物质的量之比(H2/CO),最优操作条件为T=750℃,P=0.1 MPa,进口水...  相似文献   

12.
用Aspen Plus建立了双流化床气化和燃烧模型,对生物质在双流化床中气化及CaO吸收合成气中的CO2过程进行了模拟研究;探讨不同反应条件:气化温度、蒸汽与生物质的质量配比(S/B)以及CaO循环量与生物质的质量配比(Ca/B)对合成气成分的影响,为该类型工业反应器的研发提供了理论依据.模拟分析结果表明:气化温度低于700℃时,CaO能很好地吸收气化过程中产生的CO2并促进平衡反应向产氢方向进行;在温度为650℃及CaO作用下,S/B在0.6~1.7内对合成气成分的影响不大;CaO的加入能够有效地改善合成气的组成,合成气中氢气浓度能达到95%以上,氢气产量达到52 mol/kg.  相似文献   

13.
This paper presents the thermodynamic assessment of biomass steam gasification via interconnected fluidized beds (IFB) system. The performance examined included the composition, yield and higher heating value (HHV) of dry syngas, and exergy efficiencies of the process. Two exergy efficiencies were calculated for the cases with and without heat recovery, respectively. The effects of steam‐to‐biomass ratio (S/B), gasification temperature, and pressure on the thermodynamic performances were investigated based on a modified modeling of the IFB system. The results showed that at given gasification temperature and pressure, the exergy efficiencies and dry syngas yield reached the maximums when S/B was at the corresponding carbon boundary point (S/BCBP). The HHV of the dry syngas continuously decreased with the increase of S/B. Moreover, the exergy efficiency with heat recovery was averagely a dozen percentage points higher than that without heat recovery. Under atmospheric conditions, lower gasification temperature favored the yield and HHV of dry syngas at various S/B. In addition, it also favored the exergy efficiencies of the process when S/B is approximately larger than 0.75. Under pressurized conditions, higher gasification pressure favored both the yield and HHV of dry syngas, as well as the exergy efficiencies at different S/B. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
设计并建立了25kW_(th)串行流化床生物质气化反应器,基于此反应器,以赤铁矿石作为载氧体,开展生物质化学链气化实验研究,考察气化反应器温度、S/B、载氧体添加比例对生物质气化特性的影响。当赤铁矿占床料比例高于40%时,该气化装置的气化反应器温度保持平稳,铁矿石载氧体的再生及传热性能优良。燃料反应器出口烟气的成分为H_2、CO_2、CO、CH_4和少量的C_2H_4。随着气化反应器温度升高,气化反应器出口烟气中CO、CH_4和C_2H_4体积分数逐渐降低,相应的CO_2体积分数逐渐升高。随着S/B由0.6升高到1.4,气化反应器出口烟气中H_2和CO_2体积分数逐渐升高,CO、CH_4和C_2H_4体积分数逐渐降低。另外,载氧体添加比例增加,生物质气化反应器出口烟气中CO、H_2、CH_4和C_2H_4体积分数呈减小的趋势,而CO_2体积分数显著增加。  相似文献   

15.
许维相 《中外能源》2010,15(3):85-88
辽河石化公司针对延迟焦化装置大油气管线与焦炭塔出口接口处结焦的影响因素进行了分析,提出预防措施:控制好加热炉出口温度;焦炭塔顶温度采用注入急冷油使塔出口温度保持在(420±5)℃;焦炭塔在切换新塔2h前,将加热炉出口温度提高2~3℃,将干气脱硫塔顶出口处压力由0.90MPa憋压到0.94MPa,减少大油气管线结焦几率;采用12点分4路向管网注3.5MPa中压蒸汽,来提高管内介质流速以缩短缩和反应时间,减少因缩和反应生成的中间相吸附在炉内管壁引起的结焦;老塔切换新塔后,将小吹汽1.0MPa低压蒸汽由设计值6~8t/h调整为4~6t/h,时间由1.5h调整为2.0h,减少在小吹汽过程中因部分泡沫层和焦粉带入大油气管线引起结焦;控制焦炭塔顶压力在0.15~0.18MPa,避免因压力过高发生泡沫夹带和压力过低增加操作成本;在焦炭塔18m、23m、27m处分别安装137Cs作为γ射线料位计放射源,随时监测料位高度,防止因生焦高度过高引起焦粉携带和溢塔事故。  相似文献   

16.
生物质鼓泡流化床气化特性的空气当量比影响分析   总被引:4,自引:0,他引:4  
在鼓泡流化床生物质气化器内,以空气为气化介质,对木屑进行了常压气化试验研究。选择空气当量比ER为0.13~0.33进行试验,研究了在气化温度为760%、810~12和860℃条件下对气化结果的影响。试验结果表明:主要燃气成分含量H2:6.2%~14.1%,CO29.9%~30.2%,CH4:1.6%~11.2%,产气率:1.0m3/kg~1.740/kg,产气低位热值:3526kJ/m3~9184kJ/m3,碳转换率:52.3%~82.3%,气化效率38%~69.1%。  相似文献   

17.
The generation of hydrogen-enriched synthesis gas from catalytic steam gasification of biomass with in-situ CO2 capture utilizing CaO has a high perspective as clean energy fuels. The present study focused on the process modeling of catalytic steam gasification of biomass using palm empty fruit bunch (EFB) as biomass for hydrogen generation through experimental work. Experiment work has been carried out using a fluidized bed gasifier on a bench-scale plant. The established model integrates the kinetics of EFB catalytic steam gasification reactions, in-situ capturing of CO2, mass and energy balance calculations. Chemical reaction constants have been calculated via the parameters fitting optimization approach. The influence of operating parameters, mainly temperature, steam to biomass, and sorbent to biomass ratio, was investigated for the hydrogen purity and yield through the experimental study and developed model. The results predicted approximately 75 vol% of the hydrogen purity in the product gas composition. The maximum H2 yield produced from the gasifier was 127 gH2/kg of EFB via experimental setup. The increase in both steam to biomass ratio and temperature enhanced the production of hydrogen gas. Comparing the results with already published literature showed that the current system enables to produce a high amount of hydrogen from EFB.  相似文献   

18.
天津石化1号溶剂再生装置,设计处理能力310t/h,主要处理来自两套焦化液化气脱硫塔、1号焦化干气脱硫塔、2号焦化干气脱硫塔以及气体分馏装置的富液和瓦斯脱硫塔的富液。以该装置为研究对象,应用流程模拟软件,建立稳态流程模拟模型。利用此模型,对影响装置能耗的参数进行灵敏度分析,研究塔压力、热负荷、进料位置、进料温度、回流比等参数间的相互关系,并以模型为指导,以节能和经济效益最大化为目标,对装置进行优化调整:将胺液浓度由32%提高至38%,再生塔回流比(质量比)由设计值1.91降低至1.0,塔顶压力由0.12MPa降低至0.10MPa,回流温度由44.7℃提高至50℃,既保证塔顶酸性气浓度达标,贫液硫含量也能满足脱硫系统需要。通过调整优化,使再生塔的蒸汽耗量明显降低,节约蒸汽6t/h,溶剂再生装置每月节电2.5×104kW.h,每年创造经济效益771万元。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号