首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A new (Z)-3-hexenyl O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside was isolated from the aerial part of Spermacoce laevis, along with 17 known compounds: (6S,9R)-roseoside, (Z)-3-hexenyl O-β-d-glucopyranoside, (Z)-3-hexenyl O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside, (Z)-3-hexenyl O-α-l-arabinopyranosyl-(1→6)-β-d-glucopyranoside, phenyethyl O-β-d-glucopyranoside, phenyethyl O-α-l-arabinopyranosyl-(1→6)-β-d-glucopyranoside, phenyethyl O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside, benzyl O-α-l-arabinopyranosyl-(1→6)-β-d-glucopyranoside, benzyl O-β-d-xylopyranosyl-(1→6)-β-d-glucopyranoside, asperuloside, 6α-hydroxyadoxoside, asperulosidic acid, kaempferol 3-O-β-d-glucopyranoside, kaempferol 3-O-rutinoside, quercetin 3-O-β-d-galactopyranoside, quercetin 3-O-α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranoside, and rutin. The structure determinations were based on physical data and spectroscopic evidence.  相似文献   

2.
Five new triterpene saponins, arganine L (1), O (2), P (3), Q (4) and R (5), were isolated from the barks of Argania spinosa (L.) Skeels. Arganines L-P and R are bidesmosidic saponins. The structures of 15 were elucidated as 3-O-[β-d-xylopyranosyl-(1–4)-β-d-glucuronopyranosyl]-28-O-[β-d-apiofuranosyl-(1–3)-β-d-xylopyranosyl-(1–4)-α-l-rhamnopyranosyl-(1–2)-α-l-arabinopyranosyl] bayogenin, 3-O-[β-d-xylopyranosyl-(1–4)-β-d-glucuronopyranosyl]-28-O-[β-d-xylopyranosyl-(1–4)-α-l-arabinopyranosyl] bayogenin, 3-O-[β-d-xylopyranosyl-(1–4)-β-d-glucuronopyranosyl]-28-O-[α-l-arabinopyranosyl] bayogenin, 3-O-[β-d-xylopyranosyl-(1–4)-β-d-glucuronopyranosyl] bayogenin, and 3-O-[β-d-apiofuranosyl-(1–4)-β-d-glucuronopyranosyl]-28-O-[β-d-xylopyranosyl-(1–4)-α-l-rhamnopyranosyl-(1–2)-α-l-arabinopyranosyl] bayogenin, respectively, mainly on the basis of their spectroscopic data.  相似文献   

3.
Two new triterpene saponins, named stellatoside B (1) and erucasaponin A (2), were isolated from a cactaceous plant, Stenocereus eruca A. C. Gibson & K. E. Horak (Machaerocereus eruca Br. & R.). The structures of 1 and 2 were elucidated as 3-O-β-d-xylopyranosyl-(1→2)-β-d-glucopyranosyl-(1→2)-β-d-glucuronopyranosyl stellatogenin and 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→3)]-β-d-glucuronopyranosyl betulinic acid 28-O-α-l-rhamnopyranosyl ester, respectively, on the basis of their spectroscopic data.  相似文献   

4.
Five novel phenolic glycosides, adenophorasides A (1), B (2), C (3), D (4), and E (5), were isolated from commercial Adenophora roots, together with vanilloloside (6), 3,4-dimethoxybenzyl alcohol 7-O-β-d-glucopyranoside (7), and lobetyolin (8). The structures of the new compounds (15) were characterized as 4-hydroxy-3-methoxyphenylacetonitrile 4-O-β-d-glucopyranoside (1), 4-hydroxy-3-methoxyphenylacetonitrile 4-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (2), 4-hydroxy-3-methoxyphenylacetonitrile 4-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (3), 4-hydroxyphenylacetonitrile 4-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (4), and 4-hydroxy-3-methoxybenzyl alcohol 4-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (5), respectively, by means of spectroscopic and chemical analyses.  相似文献   

5.
Five new glycosides, quercetin 3′-O-β-d-galactopyranoside (1), quercetin 3-O-(2″-acetyl)-β-d-glucopyranoside (2), 4,6-dihydroxy-2-methoxyphenyl 1-O-β-d-glucopyranoside (3), 4-hydroxy-2,6-dimethoxyphenyl 1-O-α-l-rhamnopyranosyl (1 → 6)-β-d-glucopyranoside (4) and 3-methyl-but-2-en-1-yl β-d-glucopyranosyl (1 → 6)-β-d-glucopyranoside (5), were isolated from Hypericum erectum Thunb. Their structures were established on the basis of spectral and chemical data.  相似文献   

6.
A new megastigmane diglycoside, leeaoside, was isolated along with four known compounds; benzyl O-α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside, quercetin 3-O-α-l-rhamnopyranoside, myricetin 3-O-α-l-rhamnopyranoside and citroside A from the leaves of Leea thorelli. The structure determinations were based on physical data and spectroscopic evidence.  相似文献   

7.
From the ethyl acetate fraction of the methanol extract of the needles of Pinus densiflora (Pinaceae), a new diterpenoid glucoside [9α,13α-epoxy-8β,14β-dihydroxy-abietic acid-18-O-β-d-glucopyranoside] (1), two flavonoid glucosides [kaempferol 3-O-β-d-glucoside (2) and 6-C-methyl kaempferol 3-O-β-d-glucoside (3)], and two monoterpenoid glucosides [bornyl 6-O-α-Larabinofuranosyl (1→6)-β-d-glucopyranoside (4) and bornyl 6-O-β-d-apiofuranosyl (1→6)-β-d-glucopyranoside (5)] were isolated and characterized on the basis of spectral analysis. Of all the compounds, 2 and 3 showed peroxynitrite scavenging activity.  相似文献   

8.
A new compound named pinoresinol 4-O-α-l-rhamnopyranosyl (1 → 2)-β-d-glucopyranoside (1) together with six known compounds, isolariciresinol 9-O-β-D-glucopyranoside (2), apigenin 6,8-di-C-β-d-glucopyranoside (3), luteolin 7-O-neohesperidoside (4), luteolin 7-O-β-d-glucopyranoside (5), 5-methoxyluteolin 7-O-β-d-glucopyranoside (6), and rutin (7), were isolated from the aerial parts of Urtica laetevirens Maxim. All of the above compounds were isolated from this plant for the first time.  相似文献   

9.
One new chromone and six known flavonol glycosides were isolated from the stems and leaves of Delphinium hybridum cv. “Belladonna Casablanca” (Ranunculaceae). The new chromone glycoside was elucidated as 2-methyl-chromone-5,7-diol 7-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (1). The six known flavonol glycosides were designated as compounds 25, being kaempferol-type glycosides, and compounds 6 and 7, being quercetin-type glycosides. The structures of these glycosides were determined by two-dimensional nuclear magnetic resonance (2D NMR) spectroscopic analysis and chemical evidence.  相似文献   

10.
Six compounds were isolated from the leaves and branches of Dioecrescis erythroclada and identified as apodanthoside, mussaenoside, gardenoside, benzyl alcohol O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside, phenethyl alcohol O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside, and oct-1-en-3-ol α-l-arabinopyranosyl-(1→6)-β-d-glucopyranoside. The structures were determined based on physical data and spectroscopic evidence.  相似文献   

11.
Two new 27-hydroxyoleanolic acid-type triterpenoid saponins, raddeanoside Ra (1) and raddeanoside Rb (2), were isolated from the rhizome of Anemone raddeana Regel. The structures of the two compounds were elucidated to be 27-hydroxyoleanolic acid 3-O-β-d-glucopyranosyl-(1 → 4)-α-l-arabinopyranoside (1) and 27-hydroxyoleanolic acid 3-O-α-l-arabinopyranosyl-(1 → 3)-α-l-rhamnopyranosyl-(1 → 2)-α- l-arabinopyranoside (2) on the basis of chemical and spectral evidence.  相似文献   

12.
Two new isoflavone glycosides, tectorigenin 7-O-β-d-glucopyranoside-4′-O-[β-d-glucopyranosyl-(1″″ → 6′′′)-β-d-glucopyranoside] (1) and iristectorigenin B 4′-O-[β-d-glucopyranosyl-(1′′′ → 6″)-β-d-glucopyranoside] (2), together with 11 known compounds, including six isoflavones, tectorigenin 7-O-β-d-glucopyranoside-4′-O-β-d-glucopyranoside (3), tectorigenin 4′-O-[β-d-glucopyranosyl-(1′′′ → 6″)-β-d-glucopyranoside] (4), tectorigenin 7-O-β-d-glucopyranoside (5), genistein 7-O-β-d-glucopyranoside (6), tectorigenin 4′-O-β-d-glucopyranoside (7), and tectorigenin (8); two phenolic acid glycosides, vanillic acid 4-O-β-d-glucopyranoside (9) and glucosyringic acid (10); a phenylpropanoid glycoside, E-coniferin (11); an auronol derivative, maesopsin 6-O-β-d-glucopyranoside (12); and a pyrrole derivative, 4-(2-formyl-5-hydroxymethylpyrrol-1-yl) butyric acid (13), were isolated from fresh Iris spuria (Calizona) rhizomes. The structures of these compounds were established on the basis of spectroscopic and chemical evidence. Inhibitory effects on the activation of Epstein–Barr virus early antigen were examined for compounds 18 and 12.  相似文献   

13.
Two new acetylated flavonol glycosides, quercetin 3-O-[(2,4-diacetyl-α-l-rhamnopyranosyl)-(1→6)]-2,4-diacetyl-β-d-galactopyranoside (1) and quercetin 3-O-[(2,4-diacetyl-α-l-rhamnopyranosyl)-(1→6)]-3,4-diacetyl-β-d-galactopyranoside (2), in addition to two known acetylated quercetin glycosides quercetin 3-O-[(2,3,4-triacetyl-α-l-rhamnopyranosyl)-(1→6)-β-d-galactopyranoside (3) and quercetin 3-O-[(2,3,4-triacetyl-α-l-rhamnopyranosyl)-(1→6)-3-acetyl-β-d-galactopyranoside (4), were isolated from the aerial part of Centaurium spicatum (L.) Fritsch (Gentianaceae). Structure elucidation, especially the localization of the acetyl groups, and complete 1H and 13C NMR assignments of these biologically active compounds were carried out using one- and two-dimensional NMR measurements, including 1H- and 13C-NMR, DEPT-135, H–H COSY, HMQC and HMBC, in addition to HR-FAB/MS experiments.  相似文献   

14.
From the leaves of Brassica juncea, three kaempferol glycosides, kaempferol-3-O-(2-O-sinapoyl)-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside-7-O-β-d-glucopyranoside (1), kaempferol-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside-7-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (2), and kaempferol-3-O-(2-O-sinapoyl)-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside-7-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (3) were isolated and the structures elucidated on the basis of spectral and chemical evidences. Antioxidant activities were determined by measuring the scavenging activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and peroxynitrite (ONOO). Compounds 1 and 3 showed good antioxidant activities with respective IC50 values of 28.61 and 36.93 μM toward DPPH; respective IC50 values of 9.79 and 11.40 μM toward ONOO. However, compound 2 showed no DPPH scavenging activity and weak ONOO scavenging activity with an IC50 value of 32.00 μM.  相似文献   

15.
We investigated the constituents of Veronicastrum villosulum (Miquel) Yamazaki (Scrophulariaceae), an endangered species belonging to the IA group. From the aerial parts of this plant cultivated at the botanical garden of Sojo University, we isolated two new cucurbitacine-type glycosides, 3-O-α-l-rhamnopyranosyl-(1 → 2)-[β-d-glucopyranosyl-(1 → 3)]-β-d-glucopyranosides of 3β,25-dihydroxycucurbit-5,23(E)-diene-7-one-25-methyl ether and 3β,23-dihydroxycucurbit-5,24-diene-7-one-23-methyl ether.  相似文献   

16.
By various chromatographic methods, three flavonoids, (2S)-naringenin (1), isorhamnetin 3-O-(2-O-α-l-rhamnopyranosyl) β-d-glucopyranoside (2), typhaneoside (3), and two sterol glycosides, β-sitosterol-3-O-(6-octadecanoyl) β-d-glucopyranoside (4) and β-sitosterol-3-O-(6-octadeca-9Z,12Z-dienoyl) β-d-glucopyranoside (5), were isolated from the pollen of Typha angustata. Their structures were determined on the basis of spectroscopic analyses. The flavonoids (13) were evaluated for their effects on the viability and proliferation of rat aortic smooth muscle cells. (2S)-naringenin (1) significantly inhibited cell proliferation in a dose-dependent manner without cytotoxic at concentrations of 30, and 50 μM; it reduced the number of cells following PDGF-BB treatment to 1.83 ± 0.30 × 104 and 2.20 ± 0.60 × 104 cells/well, respectively. These findings suggest that (2S)-naringenin has antiproliferative effects on aortic smooth muscle cells.  相似文献   

17.
A new plumieride type iridoid glucoside, morinipticoside, was isolated from the leaves and branches of Morinda elliptica together with six known compounds; asperuloside, asperulosidic acid, yopaaoside A, yopaaoside B, benzyl α-l-arabinopyranosyl (1→6)-β-d-glucopyranoside and phenyethyl α-l-arabinopyranosyl (1→6)-β-d-glucopyranoside. The structure determinations were based on physical data and spectroscopic evidence.  相似文献   

18.
New benzophenone and flavonol galloyl glycosides were isolated from an 80% MeOH extract of Psidium guajava L. (Myrtaceae) together with five known quercetin glycosides. The structures of the novel glycosides were elucidated to be 2,4,6-trihydroxybenzophenone 4-O-(6″-O-galloyl)-β-d-glucopyranoside (1, guavinoside A), 2,4,6-trihydroxy-3,5-dimethylbenzophenone 4-O-(6″-O-galloyl)-β-d-glucopyranoside (2, guavinoside B), and quercetin 3-O-(5″-O-galloyl)-α-l-arabinofuranoside (3, guavinoside C) by NMR, MS, UV, and IR spectroscopies. Isolated phenolic glycosides showed significant inhibitory activities against histamine release from rat peritoneal mast cells, and nitric oxide production from a murine macrophage-like cell line, RAW 264.7.  相似文献   

19.
Two new neolignan glycosides, (7R, 8R)-threo-guaiacylglycerol-8-O-4′-sinapyl ether 7-O-β-d-glucopyranoside (1) and (7S, 8R)-5-methoxydehydrodiconiferyl alcohol 4-O-β-d-glucopyranoside (2), and four known ones (36), were isolated from the leaves of Osmanthus heterophyllus. The structures of compounds 16 were established on the basis of spectral and chemical data.  相似文献   

20.
Seven known lignan glycosides were isolated from the leaves of Osmanthus heterophyllus: (+)-syringaresinol 4-O-β-d-glucopyranoside, (+)-syringaresinol 4, 4′-O-di-β-d-glucopyranoside, (+)-medioresinol 4, 4′-O-di-β-d-glucopyranoside, (+)-medioresinol 4-O-β-d-glucopyranoside, (+)-pinoresinol 4, 4′-O-β-d-glucopyranoside, (+)-epipinoresinol 4-O-β-d-glucopyranoside and phillyrin. Their structures were determined on the basis of spectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号