首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
用双氧水、钨酸钠及甲磺酸氧化3,4-二氨基呋咱(DAF)合成了3-氨基-4-硝基呋咱;用100%硝酸硝化DAF得到3,4-二硝胺基呋咱;用NaNO_2、H_2SO_4及NaN_3DAF重氮、取代DAF得到3-氨基-4-叠氮基呋咱;用30%的双氧水、钨酸钠及甲磺酸氧化3-氨基-4-叠氮基呋咱,得到3-叠氮基-4-硝基呋咱及3,3′-二叠氮基-4,4′-氧化偶氮呋咱。用TG-DSC研究了这些化合物的热行为。采用B3LYP/6-31G*方法预估了化合物的理论密度、标准生成、爆速、爆压。结果表明,氧化偶氮基的引入增强了呋咱类化合物的热稳定性;叠氮基的引入提高了化合物的生成焓。3-氨基-4-硝基呋咱中氨基转化为叠氮基,生成焓由183.26kJ/mol增至571.40 kJ/mol;硝胺基的引入显著提高了含能化合物的密度、爆速和爆压。  相似文献   

2.
以三聚氯氰和对苯二胺为原料,碳酸钾或氢氧化钾作为缚酸剂,合成氮杂杯[6]芳烃第一步中间体N,N’-二(4,6-二氯-1,3,5-均三嗪-2-基)-1,4-苯二胺(Ⅰ)和第二步中间体2,4-二(4-胺基苯胺基)-6-氯-1,3,5-均三嗪(Ⅱ),再由(Ⅰ)和(Ⅱ)合成最终产物氮杂杯[6]芳烃。通过红外光谱分析法和核磁共振氢谱法对产物进行了表征,证实其为目标产物,从而验证了合成路线的可行性。  相似文献   

3.
三嗪型紫外线吸收剂的合成及性能   总被引:1,自引:1,他引:1  
昝帅  姜文凤  邵玉昌 《精细化工》2007,24(11):1106-1108
用格氏试剂偶联法合成了4个有代表性的三嗪型紫外线吸收剂:2,4-双(2,4-二羟基苯基)-6-(4-甲氧基苯基)-1,3,5-三嗪、2,4-双(2,4-二羟基苯基)-6-苯基-1,3,5-三嗪、2-(2,4-二羟基苯基)-4,6-二苯基-1,3,5-三嗪和2,4,6-三(2,4-二羟基苯基)-1,3,5-三嗪,测定了它们的紫外光谱。其中,2,4-双(2,4-二羟基苯基)-6-(4-甲氧基苯基)-1,3,5-三嗪在UVB和UVA都有较强吸收,εmax=36000L/(mol.cm)(λmax=313nm),εmax=36333L/(mol.cm)(λmax=344nm),是其中最好的紫外线吸收剂。  相似文献   

4.
氰基具有强吸电子性,氰基的引入能够降低化合物的最低未占分子轨道(LUMO)能级和能隙(Eg)。以1-(4-(4,6-二氯-1,3,5-三嗪)氨基苯基)-2-(4-N,N'-二(甲基苯基)苯胺基)乙烯(MTPATRC)为母体,对均三嗪(TRC)上的氯进行氰基取代,合成了1-(4-(4-氰基-6-氯-1,3,5-三嗪)氨基苯基)-2-(4-N,N'-二(对甲基苯基)苯胺基)乙烯(MTPA-TRCc1)和1-(4-(4,6-二氰基-1,3,5-三嗪)氨基苯基)-2-(4-N,N'-二(对甲基苯基)苯胺基)乙烯(MTPA-TRCc2),其结构得到~1H NMR、ESI高分辨质谱及红外光谱等表征。研究了反应温度、时间和投料比对反应收率的影响,得到该反应的最适宜反应条件。通过紫外-可见吸收光谱,循环伏安测试分析其光物理及电化学性能,并结合计算化学得到了各化合物的计算能级。研究结果表明,1个氰基的引入可明显降低了化合物的LUMO能级及能隙Eg,但第2个氰基的进一步作用效果却很小;MTPA-TRCc1表现出最强的吸光度以及分子内电荷转移程度。  相似文献   

5.
设计、合成了一种受阻胺光稳定剂(HALS)TM-3。首先,三聚氯氰和N-丁基-2,2,6,6-四甲基-4-哌啶胺通过亲核取代反应合成了N-丁基-4,6-二氯-N-(2,2,6,6-四甲基-4-哌啶基)-1,3,5-三嗪-2-胺(中间体Ⅰ);中间体Ⅰ再与N,N-双(2,2,6,6-四甲基-4-哌啶基)-1,6-己二胺反应生成了N2,N2’-(己烷-1,6-二基)双[N4-丁基-6-氯-N2,N4-双(2,2,6,6-四甲基哌啶-4-基)-1,3,5-三嗪-2,4-二胺](中间体Ⅱ);最后,中间体Ⅱ水解生成目标化合物6,6’-{己烷-1,6-二基双[(2,2,6,6-四甲基哌啶-4-基)氮二基]}双{4-[丁基(2,2,6,6-四甲基哌啶-4-基)氨基]-1,3,5-三嗪-2-醇}(TM-3)。采用1HNMR、13CNMR、HRMS表征了TM-3的结构,通过UV-Vis、TGA考察了其性能,比较了TM-3和双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯(HALS770)在汽车清漆涂料中的光稳定性。结果表明,TM-3在210nm处具有强烈的UV-Vis吸收;热稳定性能良好,在400℃以前能...  相似文献   

6.
以三聚氯氰为原料,通过三步取代反应,合成了新型三嗪类紫外线吸收剂2-(2-羟基-4-丙二酸二乙酯基氧基苯基)-4,6-二苯基-1,3,5-三嗪(Ⅲ)和2-(2-羟基-4-丙二酸二乙酯基氧基苯基)-4,6-二(4,-甲基)苯基-1,3,5-三嗪(Ⅵ)。对他们及紫外线吸收剂UV1577的溶液进行了光老化试验,通过对比发现它们的抗光老化性能均比UV1577好。Ⅲ、Ⅵ两种化合物的总收率均为68%,含量均在98%以上。同时,用质谱(MS)及红外(IR),确定了物的结构,测定了化合物(Ⅲ、Ⅵ)的熔点。  相似文献   

7.
研制了2—(3—特丁基—4—羟基—5—甲基苯胺基)—4—氯—6—(2,2,6,6四甲基—4—哌啶氨基)—1,3,5三嗪、2,4—双(3—特丁基4—羟基5—甲基苯胺基)6—(2,2,6,6—四甲基4—哌啶氨基)—1,3,5三嗪,化合物Ⅰ[R为P(O)(OC_2H_5)_2]、化合物Ⅰ(R为癸硫基)(Ⅱ)、2,4双[2—(3,5二特丁基—4—羟基苯基)—2—甲基丙基氨基]—6—(2—(2,2,6,6四甲基—1—哌啶基)乙氧基]  相似文献   

8.
以新型高能产气衍生物为目标,以三嗪环为基本结构单元,引入硝基、氨基、叠氮基为含能基团,设计了15种三嗪环含能化合物;运用密度泛函理论,计算了三嗪环类含能化合物的几何结构、密度、生成焓、爆轰参数、单位质量的产气量以及撞击感度。结果表明,15种化合物密度在1.382~1.786g/cm~3之间,爆速分布范围为5.320~8.901km/s,爆压分布范围为16.159~38.415GPa,单位质量化合物的产气量分布范围为647.8~932.9cm~3/g。不同含能基团对产气量的贡献大小顺序为:—NH_2—N_3—NO_2;—NO_2对能量的贡献高于—N_3与—NH_2。根据理论计算结果,筛选出潜在的高能产气三嗪环衍生物为2-氨基-4,6-二硝基-1,3,5-三嗪,其生成焓为586.256kJ/mol,爆速与爆压分别为8.43km/s和30.958GPa,产气量高达843.01cm~3/g,特性落高为27cm。  相似文献   

9.
合成了9个新型的4-硝基亚胺基-1,3,5-噁二嗪(3a~3c)和2-硝基亚胺基-1,3,5-三嗪(4d~4h,5a)。其结构通过1H NMR和元素分析证实。初步生物活性研究结果表明,某些化合物具有一定的杀虫活性。如4h和5a在200 mg/mL浓度下,对蚜虫分别具有54%和91%的活性。  相似文献   

10.
2-氯-4,6-二甲氧基-1,3,5-三嗪和N-甲基吗啉反应得到氯化4-(4,6-二 甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉,其与5-甲基异(噁)唑-4-甲酸反应制备2-(5-甲基异(噁)唑-4-甲酰氧基)-4,6-二甲氧基-1,3,5-三嗪,所得化合物与4-三氟甲基苯胺反应合成标题化合物,总收率约72%(以...  相似文献   

11.
Energetic azoles have shown great potential as powerful energetic molecules, which find various applications in both military and civilian fields. This work describes the synthesis, characterization and performance evaluation of two energetic triazole derivatives, viz. N‐(2,4‐dinitrophenyl)‐3‐nitro‐1H‐1,2,4‐triazole ( 1a ) and N‐(2,4‐dinitrophenyl)‐3‐azido‐1H‐1,2,4‐triazole ( 1b ). The compounds were synthesized from 3‐nitro‐1,2,4‐triazole and 3‐azido‐1,2,4‐triazole, by a simple synthetic route and structurally characterized using FT‐IR and NMR (1H, 13C) spectroscopy as well as elemental analysis. Thermal analyses on the molecules were performed using simultaneous TG‐DTA. Both compounds ( 1a , 1b ) showed good thermal stability with exothermic decomposition peaks at 348 °C and 217 °C, respectively, on DTA. The energetic and sensitivity properties of both compounds like friction sensitivities and heats of formation are reported. The heats of combustion at constant volume were determined using oxygen bomb calorimetry and the results were used to calculate the standard molar heats of formation (ΔfHm). The azido derivative ( 1b ) showed a higher positive heat of formation. The thermo‐chemical properties of the compounds as well as the thermal decomposition products were predicted using the REAL thermodynamic code.  相似文献   

12.
Methylmethacrylate chloromethylstyrene copolymer–montmorillonite (PMMA–MMT) intercalated nanocomposite was prepared by bulk copolymerization of methylmethacrylate (MMA) and chloromethylstyrene (2 wt%) followed by phosphonium salt formation. The intercalation of polymeric phosphonium salt into montmorillonite was achieved through an ion exchange process between sodium cations in MMT and phosphonium groups attached to the copolymer. Thermogravimetric analysis (TGA) showed improved thermal stability for the intercalated nanocomposite in comparison with the pure PMMA. Biologically active compounds including 4‐amino‐6‐methyl‐3‐thioxo‐3,4‐dihydro‐2H‐[1,2,4]triazin‐ 5‐one (I), 4‐amino‐6‐methyl‐3,4‐dihydro‐2H‐[1,2,4]triazin‐3,5‐dithione (II), 4‐amino‐6‐(4‐methoxystyryl)‐3‐thioxo‐3,4‐dihydro‐2H‐[1,2,4]triazin‐5‐one (III), and 4‐amino‐6‐styryl‐3‐thioxo‐3,4‐dihydro‐2H‐[1,2,4]triazin‐5‐one (IV) have been prepared and reacted with PMMA–MMT intercalates and ion exchanged with sodium montmorillonite (MMT) in the presence of HCl. Infrared spectra (IR) show bands characteristic to amide linkage between triazine derivatives and PMMA. These nanocomposites have been characterized by X‐ray diffraction (XRD) and transmission electron microscope (TEM). The release of biologically active compounds intercalated layered silicates is controllable and these materials have a great potential as a delivery host in the pharmaceutical field. The effect of temperature and presence of saline solution on the release was studied. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

13.
The azido‐tetrazolo tautomerizations of 3,6‐diazido‐1,2,4,5‐tetrazine (DIAT) in different solvents were investigated with HPLC and 13C NMR spectroscopy. 6‐Amino‐tetrazolo[1,5‐b]‐1,2,4,5‐tetrazine (ATTZ) was irreversibly formed as the final product by azido‐cyclization following N2 elimination from one of the azido substituents at room temperature in DMSO. The structure of ATTZ was characterized by X‐ray crystallography; differential scanning calorimetry (DSC), mass spectrometry, as well as IR and 1H NMR and 13C NMR spectroscopy. The crystal density was found to be 1.272 g cm−3. DSC result suggested that ATTZ with the melting point of 84 °C strongly decomposes with explosion at 198 °C, which can be regarded as a primary explosive.  相似文献   

14.
Novel hyperbranched poly([1,2,3]‐triazole‐[1,3,5]‐triazine)s (HBP TT) were synthesized by a 1,3‐dipolar cycloaddition reaction from AB2 monomer – 2‐azido‐4,6‐bis‐prop‐2‐yn‐1‐yloxy‐ [1,3,5]‐triazine (ABPOT). The monomer contains one azide group A and two terminal alkyne units B. Thermal polymerization of ABPOT in bulk or in DMF solution leads to hyperbranched polymers containing both 1,4‐ and 1,5‐disubstituted [1,2,3]‐triazoles. The monomer was also polymerized catalytically in the presence of Cu(I) salts under mild reaction conditions in DMSO solution and in bulk affording hyperbranched poly‐[1,2,3]‐triazoles 1,4‐disubstituted only. The reactions lead to the products soluble in aprotic polar solvents like DMSO or DMF. Side reactions can proceed in a few cases, particularly: (i) homocoupling of alkyne groups, leading to the formation of insoluble products as a result of cross‐linking, (ii) isomerization of propynyloxytriazine fragments to propynyl‐ or propadienyltriazinone ones, and (iii) hydrolysis of triple bonds without the loss of solubility. Heats of formation of monomer and synthesized polymers were calculated from their combustion heats. All products were characterized by NMR‐, IR‐spectroscopy, and size exclusion chromatography (SEC) data. The obtained results open the prospect for the use of HBP TT as the high‐enthalpy modifiers for energetic and non‐energetic binders.  相似文献   

15.
In this work new energetic prepolymers are synthesised and characterised. The structure of the prepolymers exhibits the 1,3,5‐s‐triazine ring with lateral chains derived from the epichlorohydrin ring opening. The chlorine atoms in these precursors are here substituted by azido groups. The presence of these groups was confirmed by FTIR and 1H NMR spectroscopy and elemental and thermal analysis. OH group content in the energetic prepolymers was found slightly lower than expected having in view the used inert precursors, while molar mass values were similar. Whereas the precursors show an endothermic thermal decomposition, the synthesised prepolymers show a clear exothermic thermal decomposition in DSC analyses. Due to the presence of the 1,3,5‐s‐triazine ring, the exothermic peaks were observed in a wide range of temperatures. The measured glass transition temperatures vary from −15.5 °C to −43.3 °C. High densities and a wide range of viscosities were found.  相似文献   

16.
Reactions of hydrazonoyl halides 6 with either 4‐amino‐2,3‐dihydro‐6‐substituted‐3‐thioxo‐[1,2,4]‐triazin‐5(4H)ones 1 ( 2 ) or 4‐amino‐3‐methylthio‐6‐substituted‐[1,2,4]‐triazin‐5(4H)ones 3 ( 4 ) gave [1,2,4]‐triazino‐[4,3‐b][1,2,4,5]tetrazine derivatives 9 ( 10 ), respectively. The mechanism of the reactions studied is discussed.  相似文献   

17.
分别以6-溴吡啶-2-甲酸和3-腈基-4-甲基-2,6-二氯吡啶为原料,经过酰胺化、肼取代、缩合等反应合成4种新型吡啶腙类Schiff碱有机配体:N-苯基-2-甲酰胺-6-肼吡啶缩水杨醛;N-苯基-2-甲酰胺-6-肼吡啶缩香草醛;N-苯基-2-甲酰胺-6-肼吡啶缩对羟基苯甲醛;3-腈基-4-甲基-2,6-二肼吡啶二缩水杨醛。通过红外光谱、核磁共振谱对其结构进行了表征。  相似文献   

18.
4,6‐Diazido‐N‐nitro‐1,3,5‐triazine‐2‐amine (DANT) was prepared with a 35 % yield from cyanuric chloride in a three step process. DANT was characterized by IR and NMR spectroscopy (1H, 13C, 15N), single‐crystal X‐ray diffraction, and DTA. The crystal density of DANT is 1.849 g cm−3. The cyclization of one azido group and one nitrogen atom of the triazine group giving tetrazole was observed for DANT in a dimethyl sulfoxide solution using NMR spectroscopy. An equilibrium exists between the original DANT molecule and its cyclic form at a ratio of 7 : 3. The sensitivity of DANT to impact is between that for PETN and RDX, sensitivity to friction is between that for lead azide and PETN, and sensitivity to electric discharge is about the same as for PETN. DANT′s heat of combustion is 2060 kJ mol−1.  相似文献   

19.
Polo‐like kinase 1 (Plk1) is an evolutionarily conserved serine/threonine kinase, and its N‐terminal kinase domain (KD) controls cell signaling through phosphorylation. Inhibitors of Plk1 are potential anticancer drugs. Most known Plk1 KD inhibitors are ATP‐competitive compounds, which may suffer from low selectivity. In this study we discovered novel non‐ATP‐competitive Plk1 KD inhibitors by virtual screening and experimental studies. Potential binding sites in Plk1 KD were identified by using the protein binding site detection program Cavity. The identified site was subjected to molecular‐docking‐based virtual screening. The activities of top‐ranking compounds were evaluated by in vitro enzyme assay with full‐length Plk1 and direct binding assay with Plk1 KD. Several compounds showed inhibitory activity, and the most potent was found to be 3‐((2‐oxo‐2‐(thiophen‐2‐yl)ethyl)thio)‐6‐(pyridin‐3‐ylmethyl)‐1,2,4‐triazin‐5(4H)‐one (compound 4 ) with an IC50 value of 13.1±1.7 μm . Our work provides new insight into the design of kinase inhibitors that target non‐ATP binding sites.  相似文献   

20.
The explosive properties of inclusion compounds containing the monoanion of the energetic compound 3‐nitro‐1,2,4‐triazol‐5‐one (NTO) non‐covalently bound to either of two larger, energetic, receptor complexes, namely 1‐(2,4‐dinitrophenyl)‐1,4,7,10‐tetraazacyclododecanezinc(II) or 1‐(2,4‐dinitrophenyl)‐1,4,7,10‐tetraazacyclododecanecopper(II), both as their monoperchlorate salts, are reported. The sensitivity of the receptor host–guest complexes to electrostatic discharge or friction was not found to differ from that displayed by the separate components. However, for thermal sensitivity it was found that whereas NTO desensitized the Zn(II) receptor complex it sensitized the Cu(II) receptor complex. For sensitivity to impact, measured using the Rotter impact test, it was found that NTO sensitized the Zn(II) receptor complex, but desensitized the Cu(II) receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号