首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Large plate-like Na0.5Bi0.5TiO3 (NBT) templates have been successfully synthesized from bismuth layer-structured ferroelectric Na0.5Bi4.5Ti4O15 (NBIT) particles by the topochemical method. Because of the highly anisotropic structure, plate-like NBIT particles were first synthesized by the molten-salt process. After the topochemical reaction with the complementary reactants (Na2CO3, and TiO2) in NaCl flux, the layer-structured NBIT particles were transformed to the perovskite NBT templates. The resulting NBT templates are large and of plate-like shape. Our results also reveal that they are more effective in inducing grain orientation in the BNKT-BT ceramics as compared with BIT templates. For a BNKT-BT ceramic textured with 20 wt% of NBT templates, it exhibits a very high degree of grain orientation and gives a large Lotgering factor of 0.89.  相似文献   

2.
The screen-printing multilayer grain growth (MLGG) technique was successfully applied to perovskite-structured lead-free piezoelectric ceramics. Highly textured (Na1/2Bi1/2)0.94Ba0.06TiO3 ceramics with (1 0 0) orientation were firstly fabricated by MLGG method with (or without) template particles. The MLGG approach using anisotropic Bi4Ti3O12 templates resulted in >90% grain orientation, whereas the same approach without template particles resulted in high orientation degree. The grain orientation mechanism of MLGG using screen-printing was different form that of tape-casting and extrusion in templated grain growth (TGG) and reactive templated grain growth (RTGG) techniques. The interface between adjacent layers, which were formed by screen-printing, was the main mechanism for the texture development in MLGG technique. Compared with other grain orientation techniques, screen-printing was a simple, inexpensive and effective method to fabricate grain oriented lead-free piezoelectric ceramics.  相似文献   

3.
Highly textured PMN-28PT (0.72Pb(Mg1/3Nb2/3)O3–0.28PbTiO3) ceramics were produced by templated grain growth on <001> oriented platelet-shaped SrTiO3 template particles with an aspect ratio of 10–15. The templates were aligned in PMN-28PT matrix powder via tape casting and fired in an O2–PbO atmosphere at 1150°C for up to 15 h. This resulted in textured ceramics with a 40 micrometer grain size and without residual templates. The volume fraction of textured material (  f  ) and the orientation parameter ( r ) were quantified by fitting X-ray diffraction rocking curve data to the March–Dollase equation. Processing conditions were optimized to achieve the best possible values of f and r for the chosen templates and matrix powder. A texture fraction of at least 81 vol% and an orientation parameter of 0.2 were achieved when all random matrix grains were consumed (a perfect textured ceramic would show a texture fraction of 100 vol% and an orientation parameter of 0).  相似文献   

4.
Plate-like NaNbO3 particles were used as templates to fabricate grain-oriented 0.96(0.8Na0.5Bi0.5TiO3–0.2 K0.5Bi0.5TiO3)–0.04NaNbO3 (NKBT) ceramics. The effects of the sintering temperature and the soaking time on the grain orientation and the microstructure of the textured NKBT ceramics were investigated, and the dielectric relaxor behavior is discussed. The results show that textured ceramics were successfully obtained with orientation factor more than 0.8. The textured ceramics have a microstructure with strip-like grains aligning in the direction parallel to the casting plane. The degree of grain orientation increases initially, then decreases with increasing sintering temperature, and increases continuously with increasing soaking time. The textured NKBT ceramics shows obvious dielectric relaxor characteristics which can be well explained by microdomain–macrodomain transition theory with calculating criterion K. The results show that formation of texture is beneficial to microdomain–macrodomain transition, which lead to weaken relaxor behavior and raise the dielectric constant at Ttr.  相似文献   

5.
Plate-like Na0.5Bi0.5TiO3 (NBT) particles with perovskite structure were synthesized by topochemical microcrystal conversion from plate-like particles of layer-structured Na0.5Bi4.5Ti4O15 (NBIT) at 950°C in NaCl molten salt. As the precursors of NBT, plate-like NBIT particles were first synthesized by molten salt process by the reaction of Bi4Ti3O12, Na2CO3, and TiO2. After the topochemical reactions, layer-structured NBIT particles were transformed to the perovskite NBT platelets. NBT particles with a thickness of approximately 0.5 μm and a length of 10–15 μm retained the morphology feature of the precursor. High-aspect-ratio NBT platelets are suitable templates to obtain textured ceramics (especially NBT-based ceramics) by (reactive) template grain growth process.  相似文献   

6.
Textured 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 (NBT–6BT) ceramics were fabricated by templated grain growth (TGG) using anisotropically shaped Na0.5Bi0.5TiO3 (NBT) templates. Platelet NBT was synthesized by the topochemical technique, using precursor Na0.5Bi4.5Ti4O15 (NBIT). The NBT particles have an average length of 10–15 μm and a thickness of 1 μm, which are suitable templates for obtaining textured ceramics (especially NBT-based ceramics) by the TGG process. This study revealed that the NBT templates are effective in inducing grain orientation in NBT–6BT ceramics. For NBT–6BT ceramics textured with 5 vol% NBT templates, a Lotgering factor of 0.87 and a d 33 of 299 pC/N are given.  相似文献   

7.
Highly textured Bi3NbTiO9 ceramics are fabricated by normal sintering from molten salt-synthesized plate-like crystallites. Fine Bi3NbTiO9 plate-like crystallites (∼1 μm) not only facilitate the densification, but also enhance texture in Bi3NbTiO9 ceramics. Weak-agglomerated platelets exhibit higher sinterability and can be densified at a temperature as low as 1000°C, which is about 100°C lower than that of equiaxed powders prepared by directly calcining Bi3NbTiO9 precursor. Meanwhile, the orientation degree of textured Bi3NbTiO9 ceramics increases with sintering temperature. Highly oriented Bi3NbTiO9 (orientation degree of ∼0.91) ceramic with a relative density of ∼92% is obtained at 1150°C. Because of the oriented grain microstructure, textured Bi3NbTiO9 ceramic exhibits anisotropic electrical properties.  相似文献   

8.
Since the electromechanical devices move towards enhanced power density, high mechanical quality factor (Qm) and electromechanical coupling factor (kp) are commonly needed for the high powered piezoelectric transformer with Qm≥2000 and kp=0.60. Although Pb(Mn1/3Nb2/3)O3–PbZrO3–PbTiO3 (PMnN–PZ–PT) ceramic system has potential for piezoelectric transformer application, further improvements of Qm and kp are needed. Addition of 2CaO–Fe2O3 has been proved to have many beneficial effects on Pb(Zr,Ti)O3 ceramics. Therefore, 2CaO–Fe2O3 is used as additive in order to improve the piezoelectric properties in this study. The piezoelectric properties, density and microstructures of 0.07Pb(Mn1/3Nb2/3)O3–0.468PbZrO3–0.462PbTiO3 (PMnN–PZ–PT) piezoelectric ceramics with 2CaO–Fe2O3 additive sintered at 1100 and 1250 °C have been studied. When sintering temperature is 1250 °C, Qm has the maximum 2150 with 0.3 wt.% 2CaO–Fe2O3 addition. The kp more than 0.6 is observed for samples sintered at 1100 °C. The addition of 2CaO–Fe2O3 can significantly enhance the densification of PMnN–PZ–PT ceramics when the sintering temperature is 1250 °C. The grain growth occurred with the amount of 2CaO–Fe2O3 at both sintering temperatures.  相似文献   

9.
The mechanisms of texture evolution in Bi0.5(Na,K)0.5TiO3 (BNKT) prepared by the templated grain growth method are examined using platelike SrBi4Ti4O15 and Al2O3 powders and SrTiO3 and Al2O3 single crystals as templates. These templates give rise to a 〈100〉 texture in the BNKT matrix. The mechanism of texture evolution is dependent on the template species. When SrBi4Ti4O15 and SrTiO3 are used, a new grain (terrace) forms between the matrix and the template grains. The terrace has the same crystallographic orientation as the template. The terrace grows at the expense of the matrix grains, resulting in texture evolution. For the Al2O3 template, no terrace forms between the matrix and the template grains. Instead, the matrix grains directly attach to the template surface. The formation of a phase boundary with a specific orientation gives rise to texture evolution for this template.  相似文献   

10.
Textured (Na0.85K0.15)0.5Bi0.5TiO3 (NKBT) ceramics with a relative density of >94% were fabricated by reactive-templated grain growth. Plated-like Bi4Ti3O12 template particles synthesized by the NaCl–KCl molten salt process were aligned by tape casting in a mixture of original oxide powders. The effect of sintering temperature on the grain orientation and electrical properties of textured NKBT ceramics were investigated. The results show that the textured ceramics have a microstructure with plated-like grains aligning in the direction parallel to the casting plane. The degree of grain orientation increased at increasing sintering temperature. The textured ceramics show anisotropic electrical properties in the directions parallel and perpendicular to the casting plane. The dielectric constant parallel to {h 0 0} plane is three times higher than that of the perpendicular direction in textured NKBT ceramics. The optimized sintering temperature is 1150 °C where the maximum dielectric constant is 2041, the remnant polarization is 68.7 μC/cm2, the electromechanical coupling factor (k31) and the piezoelectric constant (d33) amount to 0.31 and 134 pC/N, respectively.  相似文献   

11.
Highly [001] textured KSr2Nb5O15 (KSN) ceramics were fabricated by templated grain growth using acicular KSN template particles (5–15 wt%) and reactive matrix of SrNb2O6 and KNbO3. Excess Nb2O5 (1–1.5 wt%) was added as a liquid former. Increasing sintering temperature and time resulted in increased texture with a maximum texture fraction of 0.98. Dielectric, ferroelectric, and piezoelectric measurements indicate anisotropic properties that are close to single crystal values in the textured ceramics with the highest P r≈18 μC/cm2, P s≈25 μC/cm2, and d 33=65 pC/N obtained in the c -axis direction.  相似文献   

12.
Platelike CaTiO3 particles with an orthorhombic perovskite structure have been synthesized by topochemical microcrystal conversion (TMC) from platelike precursor particles of the layer-structured CaBi4Ti4O15 at 950 °C. The CaTiO3 particles inherited and retained the shape of the precursor particles with a thickness of approximately 0.3 μm, and a width of 2–6 μm. XRD analysis showed that in the TMC reaction, the crystallographic {0 0 1} plane of CaBi4Ti4O15 is converted into the {1 0 0} plane of CaTiO3. Using the platelike CaTiO3 particles as templates in the templated grain growth method, dense {1 0 0} grain-oriented CaTiO3 ceramics having a {1 0 0} orientation could be fabricated at sintering temperatures between 1350 and 1500 °C. The maximum orientation factor reached 99.7% at 10% of template. It was found that texturing improves microwave dielectric low-loss properties, providing a 1.55 times higher Qf value of 9310 GHz in textured ceramics compared to that of 6005 GHz in non-textured ceramics.  相似文献   

13.
In this study, in order to develop low-temperature sintering ceramics for a multilayer piezoelectric transformer application, we explored CuO and Bi2O3 as sintering aids at low temperature (900 °C) sintering condition for Sb, Li and Mn-substituted 0.8Pb(Zr0.48Ti0.52)O3–0.16Pb(Zn1/3Nb2/3)O3–0.04Pb(Ni1/3Nb2/3)O3 ceramics. These substituted ceramics have excellent piezoelectric and dielectric properties such as d33  347 pC/N, kp  0.57 and Qm  1469 when sintered at 1200 °C. The addition of CuO decreased the sintering temperature through the formation of a liquid phase. However, the piezoelectric properties of the CuO-added ceramics sintered below 900 °C were lower than the desired values. The additional Bi2O3 resulted in a significant improvement in the piezoelectric properties. The composition Sb, Li and Mn-substituted 0.8Pb(Zr0.48Ti0.52)O3–0.16Pb(Zn1/3Nb2/3)O3–0.04Pb(Ni1/3Nb2/3)O3 + 0.5 wt% CuO + 0.5 wt% Bi2O3 showed the value of kp = 0.56, Qm = 1042 (planar mode), d33 = 350 pC/N, when it was sintered at 900 °C for 2 h. These values indicated that the newly developed composition might be suitable for multilayer piezoelectric transformer application.  相似文献   

14.
0.83 Pb(Zr1/2Ti1/2)O3-0.11Pb(Zn1/3Nb2/3)O3-0.06Pb(Ni1/3Nb2/3)O3 (PZNNT) samples with plate-like PbTiO3 (PT) template were prepared using tape casting technology. The microstructure evolution and reaction mechanism between the matrix and PT template was investigated systematically. The quench heat treatment experiment was designed and the microstructure was evaluated. The results showed that the plate-like PT template has relatively low thermal stability which would decompose to form Pb-rich liquid phase and Ti-rich region at the sintering temperature of 900 °C–1050 °C. Plate-like PT template reacted with the PZNNT matrix materials during the sintering process, which did not contribute to the grain growth orientation for PZNNT matrix. Finally, the mechanism of grain growth for the PZNNT ceramics with plate-like PT template is clarified. This work demonstrated that the thermal stability of plate-like template is one of the key factors for fabricating textured piezoelectric ceramics.  相似文献   

15.
Microstructure development in Bi0.5(Na0.5K0.5)0.5TiO3 prepared by a reactive-templated grain growth process was dependent on the sizes of platelike Bi4Ti3O12 (BiT) and equiaxed TiO2 particles used as starting materials. Calcined compacts were composed of large, platelike template grains and small, equiaxed matrix grains, the sizes of which were determined by those of the BiT and TiO2 particles, respectively. Texture was developed by the growth of template grains at the expense of matrix grains during sintering, and a new mechanism of grain growth was proposed on the basis of microstructure observation. The grain growth rate was determined by the template and matrix grain sizes, and a dense ceramic with extensive texture was obtained using small BiT and TiO2 particles.  相似文献   

16.
Dense, highly 〈110〉-textured BaTiO3 ceramics were prepared by the reactive-templated grain growth method. Needlelike TiO2 (rutile) particles with their needle axis parallel to 〈001〉 were used as reactive template particles. Slurry containing an equimolar mixture of TiO2 and BaCO3 was tape cast to form a green compact, in which TiO2 particles were aligned with their needle axis parallel to the casting direction. Calcination of the green compact changed TiO2 particles into BaTiO3 grains with their 〈110〉 direction parallel to the casting direction, for which the topotaxial relation of was responsible. Sintering yielded a dense, highly textured BaTiO3 compact.  相似文献   

17.
The temperature dependence of the piezoelectric properties of vanadium substituted strontium bismuth niobate, SrBi2Nb1.95V0.05O9 (SBNV) ceramics, were investigated in various vibration modes. The effects of grain orientation in SBNV ceramics on the piezoelectric properties were also studied by the hot-forging (HF) method. The anisotropy of the piezoelectric properties of each vibration mode was confirmed by observing the grain orientation. In particular, HF-SBNV ceramics of the (33) and (15) modes showed excellent piezoelectric properties with relatively high mechanical quality factors, Qm (2200, 4600), and high electrical quality factors, Qe max (66.0, 21.6), respectively. In addition, HF-SBNV ceramics showed low temperature coefficients of resonance frequency TC-fr (−16.5, −27.0). HF-SBNV ceramics are considered to be superior candidates for the lead-free piezoelectric application of ceramic resonators.  相似文献   

18.
A promising way to improve the performance of piezoelectric ceramics is grain orientation by templated grain growth. In this work lead-based piezoelectric ceramics Pb(Mg1/3Nb2/3)0.68Ti0.32O3 (PMN–32PT) and Pb(Mg1/3Nb2/3)0.42(Ti0.638Zr0.362)0.58O3 (PMN–37PT–21PZ) ceramics were textured via templated grain growth process. For texturization (001)-oriented BaTiO3 (BT) platelets (approximately 10 μm × 10 μm × 2 μm) were utilized as templates. The texturized ceramics were accomplished by aligning the templates by tape casting. The template growth into the matrix resulted in textured ceramics with Lotgering factors between 0.94 and 0.99 for both compositions. Consequences of the texture are enhanced dielectric and piezoelectric properties. Unipolar strain-field measurements of textured ceramics showed 0.25% strain s 33 at 3 kV/mm. Large signal d 33* of up to 878 pm/V were determined directly from strain measurements. Compared with randomly oriented ceramics in texturized samples unipolar strain s 33 and large signal d 33* was enhanced by a factor of up to 1.8.  相似文献   

19.
In this work, Cu2Ta4O12 ceramic was investigated as a promising, lead-free, nonferroelectric material with high dielectric permittivity. The results of impedance spectroscopy studies carried out at frequencies 10 Hz to 2 MHz over a wide temperature range from −55 to 700 °C were analyzed in the impedance, dielectric permittivity and electric modulus formalisms. In complex impedance plots two distinct arcs were distinguished, ascribed to the semiconducting grains and to the insulating grain boundaries. Cu2Ta4O12 ceramic was found to exhibit a high dielectric permittivity exceeding 10,000 at low frequencies in the temperature range 150–740 °C. High permittivity of this material was attributed to the formation of internal (grain boundary) barrier layer capacitors. The influence of sintering conditions on microstructure, composition and dielectric properties of Cu2Ta4O12 ceramics was also studied.  相似文献   

20.
Textured (Na,K)0.5Bi0.5TiO3 ceramics were fabricated by reactive-templated grain growth in combination with tape casting. The effects of sintering conditions on the grain orientation and the piezoelectric properties of the textured (Na,K)0.5Bi0.5TiO3 ceramics were investigated. The results show that the textured ceramics have microstructure with plated-like grains aligning in the direction parallel to the casting plane. The ceramics exhibit {h 0 0} preferred orientation and the degree of orientation is larger than 0.7. The degree of grain orientation increases with the increasing sintering temperature. The textured ceramics show anisotropy dielectric and piezoelectric properties in the directions of parallel and perpendicular to the casting plane. The ceramics in the perpendicular direction exhibit better dielectric and piezoelectric properties than those of the nontextured ceramics with the same composition. The optimized sintering temperature is 1150 °C where the maximum d33 of 134 pC/N parallel to casting plane, the maximum k31 of 0.31, and the maximum Qm of 154 in perpendicular direction were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号