首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(8):10999-11008
Nowadays, developing reusable and highly efficient materials for separating nano/micro-sized oil droplets from oil/water mixture and emulsion remains very challenging. Herein, hedgehog-like micro/nanostructure nickel particles were fabricated via a hydrothermal route. Thanks to its unique morphology, the octadecyltrichlorosilane (ODTS)-modified nickel particles show suitable superhydrophobicity/superoleophilicity properties with water contact angle, oil contact angle, and contact angle hysteresis values of 169.17° ± 2.13°, 0°, and 2.32°± 0.34°, respectively, making the potential sorbent for oil/water separation. The dense narrow thorns of superhydrophobic/superoleophilic nickel particles help the maximum scattering of particles on the surface and in the solutions. Hence, superhydrophobic/superoleophilic nickel particles demonstrated outstanding sorption capacity ranging from 3.86 to 5.27 (g/g) for a wide range of organic solvents and oils. Also, sorption capacities were retained even after 10 sorption cycles. Additionally, sorption capacities remain steady under acidic, alkaline, and high-saline conditions, indicating the high resistance in the harsh media. More importantly, ODTS-modified particles could also be used in oil/water emulsion separation with efficiencies of higher 99%. The appropriate resistance of hedgehog-like micro/nanostructure nickel particles to various environmental conditions as well as reusability and recyclability provides good opportunities for industrial applications of oil uptake from the oil/water mixture and emulsion.  相似文献   

2.
利用简便的液相法,在室温下于不锈钢网上沉积ZnO纳米片和纳米花粗糙结构,接着通过浸渍法修饰低表面能物质硬脂酸,制备了超疏水不锈钢网。对沉积后的不锈钢网表面形貌、晶体结构、润湿性能、耐磨性能、油水分离性能等进行表征与测定。结果表明,该不锈钢网表面由纳米片和纳米花组成的微纳米结构ZnO构成,具有超疏水性,水接触角161 °;油水分离效率达98%,循环使用20次后分离效率仍保持在95.5%以上;具有良好的机械耐磨性,在高盐环境中表现出化学稳定性。  相似文献   

3.
This study reports a facile and sustainable approach to fabricate superhydrophobic coating from eggshell biowaste. The coating was prepared by ball milling chicken eggshells, composed of hydrophilic calcium carbonate (CaCO3), to microsized particles followed by surface hydrophobilizing with stearic acid (C17H35COOH) to form low surface energy nanosized calcium stearate ((C17H35COO)2Ca) through the esterification of hydroxyl groups (-OH) absorbed on a surface of CaCO3 with carboxyl groups (–COOH) of stearic acid. Then, a layer of modified eggshell particles dispersed in polystyrene (PS) binder was dip-coated on a substrate. A coated surface with water contact angles of 151° ± 1° on glass and 153° ± 1° on cotton fabric substrates was achieved when a 4:1 weight ratio of the modified eggshell:PS was used. The uniform distribution of the modified eggshell particles throughout the coating led to a surface with high degree of hierarchical micro-nanoscale roughness which resulted in superhydrophobicity. The superhydrophobic eggshell coating showed good environmental stability, self-cleaning, and oil/water separation properties. These results suggest that eggshell biowaste can be utilized for superhydrophobic applications.  相似文献   

4.
Massive oily wastewater discharged from industrial production and human daily life have been an urgent environmental and ecological challenge. Superhydrophobic materials have attracted tremendous attention due to their unique properties and potential applications in the treatment of wastewater. In this study, a novel superhydrophobic/superoleophilic composite melamine sponge modified with dual silanized Si O_2 microspheres was fabricated simply by a two-step sol–gel method using vinyltriethoxysilane and hexadecyltrimethoxysilane as functional agent, which exhibited a water contact angle of 153.2° and a water sliding contact angle of 4.8°. Furthermore, the composite sponge showed the excellent oil adsorption performance and the compressive elasticity reaching up to 130 g·g~(-1) of dichloromethane and 33.1 k Pa of compressive stress. It was worth noting that the composite sponge presented the excellent separation efficiency(up to 99.5%) in the processes of continuous oil/water separation. The robust superhydrophobic composite melamine sponge provided the possibility with the practical application for oil–water separation.  相似文献   

5.
Highly efficient oil-water separation shows urgent demand in industrial applications, especially in oil-spill accidents and organic solvent separation. Herein, a novel method is proposed for continuous oil-water separation by a pressure response through valve, which is loaded in a flexible convolute superhydrophobic/superoleophilic film based on low-density polyethylene (LDPE)/ethylene-propylene-diene terpolymer (EPDM) thermoplastic vulcanizate (TPV). The superhydrophobic/superoleophilic LDPE/EPDM TPV film (with contact angles of oil and water are 0° and 161.9°± 2.2°) is prepared only via a molding process where sandpaper is used as the template. The superhydrophobic/superoleophilic property of the TPV film shows robust performance in the activity endurance test. More importantly, the flexible LDPE/EPDM TPV film can be easily rolled up and loaded in through valve, which is the pressure response channel in oil-water separation. The typical separation pressure of oil and water is 3.01 and 6.17 kPa, which means the oil can be completely separated from the oil-water mixture under proper pressure in the pressure response through valve.  相似文献   

6.
Renewable superhydrophobic materials have attracted great attention due to their extensive applications in the fields such as cost-effective and biodegradable oil/water separation field. Herein, we reported an eco-friendly and facile methodology to develop the superhydrophobic cellulosic paper by immersion method using the ethanol solution of stearic acid. Furthermore, the treated cellulosic papers showed super-hydrophobicity with water contact angle (WCA) above 153°. Interestingly, this method can realize superhydrophobic-hydrophilic conversion by simply adjusting the temperature and is amenable for different substrates and with the WCA of 114-162°. More importantly, the utilization of fluorinated reagents has been avoided, thereby minimizing the production cost and improving safety and environmental aspects. Meanwhile, the modified natural cellulosic paper is applied for oil–water separation, and its separation efficiency was as high as 95% after 10 cycles, indicating the good reusability of stearic acid modified filter papers. Consequently, this simple strategy based on the stearic acid immersion method thus provided an easy conversion of superhydrophobic-hydrophilic interface and provided facile strategies for conversion of commercial quantitative filter paper to functional materials for oil/water separation.  相似文献   

7.
A one-pot sonochemical irradiation method was developed for the fabrication of superhydrophobic and superoleophilic cotton fabric from a solution consisting of branched silica nanoparticles and tetraethoxysilane-dodecyltrimethoxysilane sol. The silica/sol-coated cotton fabric could be wetted by liquids of low surface tension, but was water repellent with a water contact angle of 159 ± 1.2° and water shedding angle of 6 ± 0.8°. The as-prepared cotton fabric could be used as effective materials for the separation of oil from water with separation efficiency as high as 98.2% and maintained separation efficiency above 94% after 30 separation cycles for the kerosene-water mixture. Moreover, the superhydrophobic and superoleophilic cotton fabric could maintain stable superhydrophobicity after treatment with strong acidic and alkali solutions, and harsh mechanical damage. Therefore, this reported robust superhydrophobic cotton fabric exhibits encouraging practical application for oil-water separation.  相似文献   

8.
Polytetrafluoroethylene-polyphenylene sulfide composite coating mesh film was successfully prepared by a simple layered transitional spray-plasticizing method on a stainless steel mesh. It shows super-hydrophobic and super-oleophilic properties. The contact angle of this mesh film is 156.3° for water, and close to 0° for diesel oil and kerosene. The contact angle hysteresis of water on the mesh film is 4.3°. The adhesive force between the film and substrate is grade 0, the flexibility is 1 mm and the pencil hardness is 4H. An oil-water separation test was carried out for oil-contaminated water in a six-stage superhydrophobic film separator. The oil removal rate can reach about 99%.  相似文献   

9.
为研发绿色环保、制备工艺简单的油水分离材料,以单宁酸(TA)和聚乙二醇(PEG)为改性剂,聚偏氟乙烯(PVDF)膜为基底,通过简单浸渍法,制备了超亲水复合膜(TAPE膜)。采用SEM、AFM、FTIR、XPS和接触角测定仪对TAPE膜进行了表征和分析,并考察了TAPE膜的油水分离性能、耐磨性能和稳定性。结果表明,TAPE膜具有多孔微纳米粗糙结构,当TA含量为蒸馏水质量的1.75%时,该膜的水接触角和水下油接触角分别为0°和156°,表现出超亲水性和水下超疏油性。在0.09 MPa工作压力下,TAPE膜分离水包油乳液的膜通量为1146.4 L/(m2·h),是原始PVDF膜的30倍,该膜对油水混合液和水包油乳液的分离效率均可达99.9%。此外,TAPE膜具有良好的稳定性,膜表面经砂纸(320目)磨损(100 g载重)25次后水接触角仍高达152°。  相似文献   

10.
任龙芳  汤正  胡艳  强涛涛 《精细化工》2023,40(2):263-271
为提高聚氨酯泡沫(PUF)的疏水性能,首先,采用十六烷基三甲氧基硅烷(HDTMS)对花生壳粉末(PSP)进行改性,得到疏水改性花生壳粉末(H-PSP)。水接触角测试结果表明,改性后H-PSP的水接触角由PSP的0°提高至145.2°。然后,采用预聚体法制备了PUF负载H-PSP复合材料[H-PSP-PUF-n,n为H-PSP占聚氨酯预聚体(PPU)质量的百分数]。对H-PSP-PUF-n的结构和性能进行了表征与测试。结果表明,H-PSP的负载提高了泡沫材料的表面粗糙度和力学性能,H-PSP的最佳负载量为PPU质量的10%(标记为H-PSP-PUF-10)。与PUF相比,H-PSP-PUF-10的静态水接触角达到142.4°,较PUF提高了50.4°。对二氯甲烷、石油醚、煤油、二甲苯、环己烷进行油水分离实验,结果表明,H-PSP-PUF-10对石油醚、煤油、二甲苯、环己烷的吸油倍率在7~9 g/g,而且具有良好的油水选择性。经15次吸附-脱附循环后,H-PSP-PUF-10对各油品的吸油倍率在6.5~8.0 g/g,具有良好的循环利用性。  相似文献   

11.
为提高聚氨酯泡沫(PUF)的疏水性能,首先采用十六烷基三甲氧基硅烷(HDTMS)对花生壳粉末(PSP)进行改性,得到疏水改性花生壳粉末(H-PSP)。水接触角测试结果表明,改性后H-PSP的水接触角由PSP的0°提高至145.2°。然后采用预聚体法制备了PUF负载H-PSP复合材料(H-PSP-PUF-n,n为H-PSP占聚氨酯预聚体PPU的质量分数)。对H-PSP-PUF-n的结构和性能进行了表征与测试。结果表明,H-PSP的负载提高了泡沫材料的表面粗糙度和力学性能,H-PSP的最佳负载量为PPU质量的10%(H-PSP-PUF-10)。与PUF相比,H-PSP-PUF-10的静态水接触角达到142.4°,较PUF提高了50.4°。对二氯甲烷、石油醚、煤油、二甲苯、环己烷五种油品进行油水分离实验,结果表明,H-PSP-PUF-10对不同油品的吸油倍率在7~9 g/g,而且具有良好的油水选择性。经15次吸附-脱附循环后,H-PSP-PUF-10对各油品的吸油倍率在6.5~8.0 g/g,具有良好的循环利用性。  相似文献   

12.
采用树脂粘接法,将硬脂酸修饰后的粉煤灰用环氧树脂粘接在不锈钢网骨架表面,制备了超疏水不锈钢网,并对其进行了TEM、SEM、FTIR和接触角等表征。结果显示:在高倍显微镜下改性后的超疏水不锈钢网表面呈一定粗糙度的微纳米分级结构,静态水接触角高达153°。此外,该超疏水不锈钢网具有良好的机械稳定性和超疏水耐久性,其表面经机械磨损试验100次后水静态接触角仍高达141°。该材料用于多种油/有机溶剂与水的混合液的分离中,分离效率均高于94%。  相似文献   

13.
采用非诱导相分离法,通过将纤维素纳米晶(CNCs)与两种聚合物(聚偏二氟乙烯和聚二甲基硅氧烷)进行结合,利用CNCs之间的静电排斥力及其高比表面积特性,有效降低相分离过程中聚合物的聚集,减小了颗粒尺寸,增强了颗粒分散性,在棉布、木板和玻璃表面构造了精细均匀的微纳米粗糙结构。采用FTIR、SEM、AFM、接触角测量仪、3D光学轮廓仪对CNCs和超疏水表面的形貌、结构和超疏水性进行表征。研究发现,棉布、木板和玻璃表面的水接触角分别最高可达158 °、156.8 °和153.8 °,滚动角最低分别为2 °、2.7 °和3.4 °,呈现出明显的超疏水特征。经过机械摩擦(500余次)、酸碱处理(pH 1~13)、温度变化(–40~40°C)以及紫外光照射(0~320 h)后,基材表面仍具有较好的超疏水性。此外,基材具有优异的自清洁性和油水分离效率,超疏水棉布的最高分离效率可达98.4%。  相似文献   

14.
In this paper, a facile, inexpensive, and environment-friendly method is developed to construct a superhydrophobic surface with hierarchical micro/nanostructures on the steel substrates. The superhydrophobic surface was fabricated by magnetic agitation of a mixture of micro and nanosized Zinc oxide (ZnO) suspensions on a substrate, after being modified with a low-surface energy monolayer of stearic acid, the as-prepared coating exhibits self-cleaning properties with a water contact angle of 162° and a sliding angle of 6°, and shows the good corrosion resistance. It is believed that the rapid and cheap technique have a promising future application for fabricating superhydrophobic surfaces on steel materials.  相似文献   

15.
A porous superhydrophobic poly (vinyl chloride) surface was obtained by a simple approach. The water contact angle and the sliding angle of the superhydrophobic poly(vinyl chloride) surface were 154 ± 2.3o and 7o, respectively. The porous superhydrophobic PVC surface remained superhydrophobic property in the pH range from 1 to 13. When the superhydrophobic PVC surface was immersed in water with the temperatures ranging from 5 °C to 50 °C for 1 h to 30 days, the water contact angle remained higher than 150°. After outdoor exposure for 30 days, the contact angle still remained 150o.  相似文献   

16.
《Ceramics International》2016,42(8):9621-9629
Decorative materials, including bamboo timber, have been proposed to exploit their superhydrophobic and self-cleaning properties, but a comprehensive appraisal of their environmental adaptability is still deficient. In this paper, a robust and durable superhydrophobic surface was formed on bamboo timber substrate through a process combining chemical solution deposition and chemical modification. The superhydrophobic surface resulted from micro-nanoscale binary-structured TiO2 films and the assembly of low-surface-energy fluorinated components, which exhibited a water contact angle of 163±1° and a sliding angle of 3±1°. The surface maintained superhydrophobicity after mechanical abrasion against 1500 mesh SiC sandpaper for 800 mm at the applied pressure of 1.2 kPa, indicating good mechanical stability. Moreover, the superhydrophobic surface exhibited good chemical stability against both acidic and basic aqueous solutions (e.g., simulated acid rain). After exposure to atmosphere for more than 180 days, the obtained surface still maintained a contact angle of 155±2° and a sliding angle of 6±2°, revealing good long-term stability. In addition, the as-prepared superhydrophobic surface exhibited almost complete wet self-cleaning of dirt particles with water droplets. It is believed that the method presented in this study can provide a straightforward and effective route to fabricate a large-area, mechanically robust, anticorrosive and self-cleaning superhydrophobic surface on woody materials for a great number of potential applications.  相似文献   

17.
以不锈钢网为基底,通过化学刻蚀法制备微米级粗糙表面,通过一步浸泡法将st9ber法制得的疏水亲油纳米Si O2颗粒沉积到粗糙的不锈钢网表面,制备了具有微纳二级粗糙结构的超疏水超亲油不锈钢网。利用扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FT-IR)和接触角测量仪(CA)表征了超疏水超亲油不锈钢网的表面形貌、化学组成和润湿性能,并将其用于油水分离过程中。结果表明,疏水亲油纳米Si O2颗粒成功的沉积到不锈钢网表面;水滴在超疏水超亲油不锈钢网上的接触角最大为151°,煤油的接触角为0°;制备的超疏水超亲油不锈钢网不仅能高效的分离不同种类油和水的混合物,还能高效的分离油和腐蚀性液体(强酸或强碱水溶液)的混合物,其耐腐蚀特性可满足复杂环境下的油水分离要求。  相似文献   

18.
In recent years, with the continuous discharge of wastewater, which has caused serious environmental pollution, it is a task to separate oil or water from wastewater. Therefore, an efficient and low-cost oil–water separation method is needed to separate the oil–water mixture. Here, a superhydrophobic/superoleophilic low density polyethylene/styrene-butadiene rubber (LDPE/SBR) thermoplastic vulcanizate (TPV) film (oil contact angle of 0° and water contact angle of 161.1° ± 1.7°) is prepared using an etched aluminum foil as a template and applied to a laboratory-assembled oil–water separation device, which is a new method for oil–water separation via a pressure response valve. The LDPE/SBR TPV film is rolled up and stuffed into the through-valve, and the gap between the films is used as the pressure response channel for oil and water separation, thus achieving oil and water separation. When the film gap is 25 or 50 µm, the separation efficiency of TPV film is greater than 99% with the variation of external pumping force, indicating that this method can achieve complete oil–water separation under a suitable external pumping force. This functional TPV film has good recyclability, environmental stability, chemical stability, mechanical durability, as well as thermal stability, which makes it have great application potential.  相似文献   

19.
肖乾  王斌  黄月文 《精细化工》2021,38(7):1473-1479
首先,将棉纤维浸泡在含有盐酸多巴胺(DA)和纳米Fe3O4的Tris-HCl缓冲溶液中制备得到聚多巴胺(PDA)-Fe3O4磁性棉纤维.其次,用十二烷基三乙氧基硅烷(DTES)在碱性的乙醇水溶液中对PDA-Fe3O4磁性棉纤维进一步改性,得到DTES-PDA-Fe3O4磁性-超疏水棉纤维.采用FTIR、XRD、TG、SEM、EDS、AFM、水接触角测量仪对改性前后棉纤维的化学组成、表面微观结构、疏水性能进行表征;测试了改性棉纤维分离效率、吸附性能.结果表明:DTES-PDA-Fe3O4改性棉纤维具有微/纳米尺寸粗糙结构;具有优异的超疏水性和磁性,水接触角大于160°;该棉纤维可重复使用且具有超高选择吸附性能和油水分离性能,可吸附自身质量8.96倍的氯仿,对氯仿油水混合液分离效率大于98.90%,可应用于生产生活中含油废水的处理.  相似文献   

20.
Fast development of oil industry and cargo distribution make accidental oil spills more possible in the course of transportation. Here we fabricated a hydrophobic macroporous phenol resin poly high internal phase emulsions (poly‐HIPEs) to adsorb oil pollution. To improve hydrophobic property and adsorption ability of the poly‐HIPEs, we adopted a facile way to modify the poly‐HIPEs that Fe3O4 nanoparticles act as magnetic particles to make the poly‐HIPEs magnetic and 1‐dodecanethiol as hydrophobic monomer grafted to the surface to strengthen the hydrophobicity with dopamine as the adhesive. As a result, we succeed in making the poly‐HIPEs superhydrophobic and their contact angle transforms from 107° to 150°. After the oil adsorption experiment, the adsorption capacity of the modified poly‐HIPEs is obviously better than the original poly‐HIPEs which is about ten times than original weight of material, what's more, the final products also have good recycle ability after ten times' employing, which makes it a promising candidate material for use in oil‐spill cleanups. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44731.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号