首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Si3N4 ceramics with high thermal conductivity and outstanding mechanical properties were prepared by adding β-Si3N4 seeds and nanophase α-Si3N4 powders as modifiers. The introduction of β-Si3N4 seeds enhanced the growth of β-Si3N4 grains. Owing to the interlocked structure induced by the β-Si3N4 grains, the fracture toughness of Si3N4 ceramics reached a high value of 7.6 MPa·m1/2; also, the large-sized grains increased the contact possibility of Si3N4 grains, improving the thermal conductivity of Si3N4 ceramics (64 W/(m·K)). Because of the introduction of nanophase α-Si3N4, the flexural strength, fracture toughness, and thermal conductivity of the Si3N4 ceramics increased to 754 MPa, 7.2 MPa·m1/2, and 54 W/(m·K), respectively. According to the analysis of the growth kinetics of Si3N4 grains, the rapid growth of Si3N4 grains was ascribed to the reduction in the activation energy resulting from the introduction of β-Si3N4 seeds and nanophase α-Si3N4.  相似文献   

2.
《Ceramics International》2018,44(18):22777-22783
In this paper, in order to improve the performance of Fe–Si3N4 composite synthesized by flash combustion, the detailed nitridation mechanism and formation process were discussed. In the process of high temperature nitriding, ξ phase rapidly melted to form Fe-Si melt and the cycle of rapid surface nitriding → rupture of nitridation shells → new melt exposing and nitriding occurred continually on the surface of Fe-Si melt. Since ions have different activities on the surface and internal, Fe ions near the surface migrated inwards and Si ions inside moved out; meanwhile, the Fe-Si melt kept shrinking. The nitriding reaction of the Fe-Si melt finished till the overall activity aSi approached 0, leaving the atom ratio of [Fe] to [Si] at 3:1. During the falling of the formed Si3N4 and Fe3Si melt in the N2 flow, the surface of Si3N4 was oxidized to form a SiO2 film. The nitridation product fell into the product pool, loosely stacking and adhering together by the SiO2 film. α-Si3N4 dissolved and precipitated to form β-Si3N4 crystals, and the β-Si3N4 crystals kept growing to form radioactive elongated crystals. As the temperature decreased, the Fe3Si melt cooled down; the Si-N-O melt, α-Si3N4 and the roots of elongated β-Si3N4 crystals formed the dense areas.  相似文献   

3.
Effect of sole Y2O3 additive on the nitridation behavior of silicon powder was systematically studied using thermo gravimetry, differential thermal analysis, particle size analysis, X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning electron microscope and thermodynamic analysis in this paper. The thermo gravimetry results showed that Y2O3 additive can significantly decrease the initial nitriding temperature and increase the nitriding rate. This phenomenon can be attributed to the much lower reaction temperature of the silica film and Y2O3 additive than that of the silica film and silicon. In addition, Y2O3 additive has little effect on the nitridation of silicon powder at 1300°C. However, it can obviously enhance the nitridation of silicon powder and the formation of β-Si3N4 at 1400°C, which is evidenced by the fact that the overall conversion increases from 58.1% to 100% and the fraction of β-Si3N4 in generated Si3N4 increases from 7.9% to 68.2% with increasing the content of Y2O3 additive from 0 to 10 wt%.  相似文献   

4.
Thermal conductivity of Si3N4 containing large β-Si3N4 particles as seeds for grain growth was investigated. Seeds addition promotes growth of β-Si3N4 grains during sintering to develop the duplex microstructure. The thermal conductivity of the material sintered at 1900 °C improved up to 106 W m−1 K−1, although that of unseeded material was 77 Wm−1 K−1. Seeds addition leads to reduction of the sintering temperature with developing the duplex microstructure and with improving the thermal conductivity, which benefits in terms of production cost of Si3N4 ceramics with thermal conductivity. ©  相似文献   

5.
Mean-field micromechanics model, the rule of mixture is applied to the prediction of the thermal conductivity of sintered β-Si3N4, considering that the microstructure of β-Si3N4 is composed of a uniform matrix phase (which contains grain boundaries and small grains of Si3N4) and the purified large grains (⩾2 μm in diameter) of Si3N4. Experimental results and theoretical calculations showed that the thermal conductivity of Si3N4 is controlled by the amount of the purified large grains of Si3N4. The present study demonstrates that the high thermal conductivity of β-Si3N4 can be explained by the precipitation of high purity grains of β-Si3N4 from liquid phase.  相似文献   

6.
《Ceramics International》2021,47(18):25449-25457
A dense β-Si3N4 coating toughened by β-Si3N4 nanowires/nanobelts was prepared by a combined technique involving chemical vapor deposition and reactive melt infiltration to protect porous Si3N4 ceramics in this work. A porous β-Si3N4 nanowires/nanobelts layer was synthesized in situ on porous Si3N4 ceramics by chemical vapor deposition, and then Y–Si–Al–O–N silicate liquid was infiltrated into the porous layer by reactive melt infiltration to form a dense composite coating. The coating consisted of well-dispersion β-Si3N4 nanowires/nanobelts, fine β-Si3N4 particles and small amount of silicate glass. The testing results revealed that as-prepared coating displayed a relatively high fracture toughness, which was up to 7.9 ± 0.05 MPa m1/2, and it is of great significance to improve thermal shock resistance of the coating. After thermal cycling for 15 times at ΔT = 1200 °C, the coated porous Si3N4 ceramics still had a high residual strength ratio of 82.2%, and its water absorption increased only to 6.21% from 3.47%. The results will be a solid foundation for the application of the coating in long-period extreme high temperature environment.  相似文献   

7.
《Ceramics International》2023,49(13):21815-21824
Silicon nitride (Si3N4) ceramics, with different ratios of fine and coarse α-Si3N4 powders, were prepared by spark plasma sintering (SPS) and heat treatment. Further, the influence of coarse α-Si3N4 powder on densification, microstructure, mechanical properties, and thermal behavior of Si3N4 ceramics was systematically investigated. Compared with fine particles, coarse particles exhibit a slower phase transition rate and remain intact until the end of SPS. The remaining large-sized grains of coarse α-Si3N4 induce extensive growth of neighboring β-Si3N4 grains and promote the development of large elongated grains. Noteworthy, an appropriate number of large elongated grains distributed among fine-grained matrix forms bimodal microstructural distribution, which is conducive to superior flexural strength. Herein, Si3N4 ceramics with flexural strength of 861.34 MPa and thermal conductivity of 65.76 W m−1 K−1 were obtained after the addition of 40 wt% coarse α-Si3N4 powder.  相似文献   

8.
To realize cost-effectively manufacture of high-performance Si3N4 porous ceramic, a ferrosilicon nitride porous ceramic with an optimized interlocking structure was synthesized by flash combustion synthesis using FeSi75 powder as raw material. And the technology has been improved in many ways to ensure stable industrial production. The theoretical combustion temperature of FeSi75 in N2(g) is up to 4608K, while Si3N4 is unstable. Both adding diluent and designing the preheat temperature of nitrogen are taken to control synthesis temperature below 1600 °C. During synthesis, the Fe–Si liquid phase and SiO(g), which are essential for the selective growth of elongated columnar β-Si3N4 and whisker α-Si3N4 respectively, are formed firstly. Then, nitriding proceed in multiple ways. N diffuses through Fe–Si(l) and reacts with Si to form β-Si3N4, and the growth of elongated β-Si3N4 in Fe–Si liquid follows the dynamic ripening model, which is very fast and effective. Thus, an interlocking structure composed of elongated β-Si3N4 with an aspect ratio above 20 is reached. There is also an indirect nitridation reaction, that is, FeSi75 preferentially reacts with trace O2 in atmosphere to form SiO(g), which is further nitrided to form needle-like α-Si3N4. Needle-like α-Si3N4 is interspersed in the well-developed columnar β-Si3N4, making the structure stronger. Fe finally exists in the form of Fe3Si, which binds the surrounding elongated Si3N4 to form a sea-urchin like unit, making the structure more stable and strengthened. Through control of these reactions, optimizations in microstructure are reached, and the annual output of has reached 25,000 tons. The reaction model is established.  相似文献   

9.
《Ceramics International》2017,43(18):16773-16779
Silicon nitride (Si3N4) was synthesized under a nitrogen gas flow (100 mL/min) using a molten salt nitriding method to investigate the effects of the temperature and NaCl content on the α-Si3N4 content in products and their micro-morphologies. Adding NaCl and β-Si3N4 in silicon powders resulted in Si nitridation products divided into two layers. Analysis of the lower product using X-ray diffraction revealed a change in the α-Si3N4 content with changes in the temperature and NaCl content. Analysis of the lower and upper layers using scanning electron microscopy revealed that the upper layer contained Si3N4 nanowires, Si3N4 nanobelts, and clastic oxide impurities; the lower one contained short needle-like and blocky Si3N4. From the microstructures of the products, the product morphology related to that the dry mixing procedure did not correspond to homogenization of the starting Si-Si3N4-NaCl mixtures and the different concentrations of raw materials resulted in different morphologies.  相似文献   

10.
C-axis textured Si3N4 with a high thermal conductivity of 176 W m−1 K−1 along the grain alignment direction was fabricated by slip casting raw α-Si3N4 powder seeded with near-equiaxed β-Si3N4 particles and Y2O3–MgSiN2 as sintering additives in a rotating strong magnetic field of 12 T, followed by gas pressure sintering at 1900 °C for 12 h at a nitrogen pressure of 1 MPa. The green material reached a relative density of 57%, with slip casting and the sintered material exhibited a relative density of 99% and a Lotgering orientation factor of 0.98. The morphology of the β-Si3N4 seeds had little effect on the texture development and thermal anisotropy of textured Si3N4. The technique developed provides highly conductive Si3N4 with conductivity to the thickness direction, which is a major advantage in practical use. The technique is also simple, inexpensive and effective for producing textured Si3N4 with high thermal conductivity of over 170 W m−1 K−1.  相似文献   

11.
The effects of the nitriding temperature (1300 and 1350°C), holding time (0‐4 hours), and thickness of Si powder compacts on the nitridation behavior of silicon were investigated by examining the nitridation rates, analyzing phase compositions, and observing the microstructures of nitrided compacts. Si powder compacts doped with Y2O3 and MgO as sintering additives were prepared with thicknesses of 3, 6, and 9 mm. The phases of nitrided compacts were transformed from Si to α‐Si3N4 and β‐Si3N4 with an increase in the nitriding temperature and holding time. The degree of nitridation increased with the nitriding temperature and holding time. The β/(α+β) ratio increased with the nitriding temperature and holding time, and with a decrease in the thickness of the Si powder compacts. However, all compacts exhibited the same tendency for a higher β/(α+β) ratio at the compact surface than in the bulk of the compact. The variation in the β/(α+β) ratio for each compact decreased with an increase in the nitriding temperature and holding time.  相似文献   

12.
A novel ZrSi2–MgO system was used as sintering additive for fabricating high thermal conductivity silicon nitride ceramics by gas pressure sintering at 1900°C for 12 hours. By keeping the total amount of additives at 7 mol% and adjusting the amount of ZrSi2 in the range of 0-7 mol%, the effect of ZrSi2 addition on sintering behaviors and thermal conductivity of silicon nitride were investigated. It was found that binary additives ZrSi2–MgO were effective for the densification of Si3N4 ceramics. XRD observations demonstrated that ZrSi2 reacted with native silica on the Si3N4 surface to generate ZrO2 and β-Si3N4 grains. TEM and in situ dilatometry confirmed that the as formed ZrO2 collaborated with MgO and Si3N4 to form Si–Zr–Mg–O–N liquid phase promoting the densification of Si3N4. Abnormal grain growth was promoted by in situ generated β-Si3N4 grains. Consequently, compared to ZrO2-doped materials, the addition of ZrSi2 led to enlarged grains, extremely thin grain boundary film and high contiguity of Si3N4–Si3N4 grains. Ultimately, the thermal conductivity increased by 34.6% from 84.58 to 113.91 W·(m·K)−1 when ZrO2 was substituted by ZrSi2.  相似文献   

13.
Various microstructures of β-Si3N4 were fabricated, with or without the addition of β-Si3N4 seed particles to high-purity β-Si3N4 powder, using Yb2O3 and ZrO2 as sintering additives, by gas-pressure sintering at 1950 °C for 16 h. The thermal conductivity of the specimen without seeds was 140 W·(m·K)−1, and the specimen exhibited a bimodal microstructure with abnormally grown grains. The thermal conductivity of the specimen with 24 vol.% seed addition was 143 W·(m·K)−1, and this specimen had the bimodal microstructure with finer grain size than that without the seeded material, but maintained the same amount of large grains (⩾2 μm in diameter) as in the specimen without the seeds. This finding indicates that the thermal conductivity of β-Si3N4 is controlled by the amount of reprecipitated large grains, rather than by the grain size of the β-Si3N4.  相似文献   

14.
Porous silicon nitride ceramics were prepared via sintered reaction bonded silicon nitride at 1680 °C. The grain size of nitrided Si3N4 and diameter of post-sintered β-Si3N4 are controlled by size of raw Si. Porosity of 42.14–46.54% and flexural strength from 141 MPa to 165 MPa were obtained. During post-sintering with nano Y2O3 as sintering additive, nano Y2O3 can promote the formation of small β-Si3N4 nuclei, but the large amount of β-Si3N4 (>20%) after nitridation also works as nuclei site for precipitation, in consequence the growth of fine β-Si3N4 grains is restrained, the length is shortened, and the improvement on flexural strength is minimized. The effect of nano SiC on the refinement of the β-Si3N4 grains is notable because of the pinning effect, while the effect of nano C on the refinement of the β-Si3N4 grains is not remarkable due to the carbothermal reaction and increase in viscosity of the liquid phase.  相似文献   

15.
Effect of impurities in the crystal lattice and microstructure on the thermal conductivity of sintered Si3N4 was investigated by the use of high-purity β-Si3N4 powder. The sintered materials were fabricated by gas pressure sintering at 1900 °C for 8 and 48 h with addition of 8 wt.% Y2O3 and 1 wt.% HFO2. A chemical analysis was performed on the loose Si3N4 grains taken from sintered materials after the chemical treatment. Aluminum was not removed from Si3N4 grains, which originated from the raw powder of Si3N4. The coarse grains had fewer impurities than the fine grains. Oxygen was the major impurity in the grains, and gradually decreased during grain growth. The thermal conductivity increased from 88 Wm−1 K−1 (8 h) to 120 Wm−1 K−1 (48 h) as the impurities in the crystal lattice decreased. Purification by grain growth thus improved the thermal conductivity, but changing grain boundary phases might also influence the thermal conductivity.  相似文献   

16.
Biomorphic porous silicon nitride Si3N4 ceramics have been produced by chemical vapor infiltration (CVI) of carbonized paper preforms with silicon, followed by gas–solid chemical reaction (R) of nitrogen with the infiltrated silicon. The paper was first carbonized in inert atmosphere to obtain a biocarbon (Cb) template. In a second step, silicon tetrachloride in excess of hydrogen was used to infiltrate silicon into the pores of the Cb template and to deposit silicon onto the Cb fibers. Finally, a gas–solid chemical reaction between nitrogen and infiltrated silicon in a temperature range of 1300–1450 °C took place in N2 or N2/H2 atmosphere to form reaction bonded silicon nitride (RBSN) ceramics. After nitridation, the samples consist mainly of α-Si3N4 phase for thermal treatment below the melting point of silicon (1410 °C) or of β-Si3N4 phase and β-Si3N4/SiC-mixed ceramics for treatment at temperatures above.The crystalline phases α- and β-Si3N4 were identified by X-ray diffraction (XRD) analysis and the microstructure of these samples was investigated by scanning electron microscopy (SEM). Energy-dispersive X-ray analysis (EDX) was used to detect the presence of silicon, nitrogen, carbon and oxygen, whereas Raman spectroscopy was applied to identify the presence of Si and SiC. Using thermal gravimetric analysis (TGA), residual carbon was determined. It was found, that addition of 10% H2 to the nitridation gas at temperatures near the melting point of silicon allows to increase the conversion of Si as well as to control the exothermic nitridation reaction obtaining the preferable needle-like microstructure.  相似文献   

17.
Porous Si3N4 ceramics were prepared via partial nitridation and self-propagating high temperature synthesis (SHS) process. Raw Si and additive Y2O3 were mixed and molded under 10 MPa into a compact, the compact was partial nitridation at 1300 °C to form a porous Si/Si3N4, and then it was buried in a Si/Si3N4 bed for SHS to obtain porous Si3N4 with rod-like β-Si3N4 morphology. The processing combined the advantages of the nitridation of Si and SHS with low cost, low shrinkage and time saving. Porous Si3N4 with a porosity of 47%, a strength of 143 MPa were obtained by this method.  相似文献   

18.
To achieve the balance between mechanical properties and electromagnetic wave-transparent properties of porous silicon nitride (Si3N4), the key is to form an interlocking microstructure constituted by columnar β-Si3N4 crystals. This structure can be realized by liquid-phase sintering. However, grain boundaries which affect high temperature properties and volume shrinkage during sintering are inevitable. We proposed a strategy to realize this structure by gel-casting of β-Si3N4 whisker (Si3N4w) and Si powder followed by in-situ nitridation of Si. To achieve chemically-stable slurry containing micro-sized Si with low viscosity, a novel formulation was developed. Two key structural parameters of the interlocking Si3N4w network, i.e., density of the Si3N4w skeleton and inter-whisker bonding mode, were adjusted by composition of raw materials and nitridation temperature. The flexural strength, dielectric constant and loss of the porous ceramics are 44.9 MPa, 2.7 and 2 × 10−3, when the volume fraction of Si3N4w/Si is 5 and the nitriding temperature is 1400 °C.  相似文献   

19.
Porous Si3N4-bonded SiC ceramics with high porosity were prepared by the reaction-sintering method. In this process, Si3N4 was synthesized by the nitridation of silicon powder. The X-ray diffraction (XRD) indicated that the main phases of the porous Si3N4-bonded SiC ceramics were SiC, α-Si3N4, and β-Si3N4, respectively. The contents of β-Si3N4 were increased following the sintering temperature. The morphology of Si3N4 whiskers was investigated by scanning electron microscope (SEM), which was shown that the needle-like (low sintering-temperature) and rod-like (higher sintering-temperature) whiskers were formed, respectively. From low to high synthesized temperature, the highest porosity of the porous Si3N4 bonded SiC ceramic was up to 46.7%, and the bending strength was ~11.6?MPa. The α-Si3N4 whiskers were derived from the reaction between N2 and Si powders, the growth mechanism was proved by Vapor–Solid (VS). Meanwhile, the growth mechanism of β-Si3N4 was in accordance with Vapor–Solid–Liquid (VSL) growth mechanism. With the increase of sintering temperature, Si powders were melted to liquid silicon and the α-Si3N4 was dissolved into the liquid then the β-Si3N4 was precipitated successfully.  相似文献   

20.
The AlN/MAS/Si3N4 ternary composites with in-situ grown rod-like β-Si3N4 were obtained by a two-step sintering process. The microstructure analysis, compositional investigation as well as properties characterization have been systematically performed. The AlN/MAS/Si3N4 ternary composites can be densified at 1650 °C in nitrogen atmosphere. The in-situ grown rod-like β-Si3N4 grains are beneficial to the improvement of thermal, mechanical, and dielectric properties. The thermal conductivity of the composites was increased from 14.85 to 28.45 W/(m K) by incorporating 25 wt% α-Si3N4. The microstructural characterization shows that the in-situ growth of rod-like β-Si3N4 crystals leads to high thermal conductivity. The AlN/MAS/Si3N4 ternary composite with the highest thermal conductivity shows a low relative dielectric constant of 6.2, a low dielectric loss of 0.0017, a high bending strength of 325 MPa, a high fracture toughness of 4.1 MPa m1/2, and a low thermal expansion coefficient (α25–300 °C) of 5.11 × 10?6/K. This ternary composite with excellent comprehensive performance is expected to be used in high-performance electronic packaging materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号