首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
双面加筋路堤作为加筋土挡土墙的一种衍生结构,沿袭了加筋土挡土墙优良的抗震性能,被广泛应用于道路建设工程,然而国内外关于双面加筋路堤的抗震设计还不够完善,采用的基于极限平衡法的抗震设计仍存在诸多问题。采用基于PLAXIS软件的有限元分析方法,对双面加筋路堤进行了较为全面的动力特性分析,结果表明,地震作用下双面加筋路堤的各层筋材最大内力分布、单侧面板侧移形式及路面沉降形式同单一的加筋土挡土墙表现形式相似;通过对不同宽高比结构筋材内力的分析得出,在地震作用下,加筋区及非加筋区之间存在第二潜在破裂面发育的可能。基于单自由度强迫振动理论及数值分析结果,建立了整体最大筋材内力与地震动及结构参数的关系。  相似文献   

2.
This paper presents an experimental study on reduced-scale model tests of geosynthetic reinforced soil (GRS) bridge abutments with modular block facing, full-height panel facing, and geosynthetic wrapped facing to investigate the influence of facing conditions on the load bearing behavior. The GRS abutment models were constructed using sand backfill and geogrid reinforcement. Test results indicate that footing settlements and facing displacements under the same applied vertical stress generally increase from full-height panel facing abutment, to modular block facing abutment, to geosynthetic wrapped facing abutment. Measured incremental vertical and lateral soil stresses for the two GRS abutments with flexible facing are generally similar, while the GRS abutment with rigid facing has larger stresses. For the GRS abutments with flexible facing, maximum reinforcement tensile strain in each layer typically occurs under the footing for the upper reinforcement layers and near the facing connections for the lower layers. For the full-height panel facing abutment, maximum reinforcement tensile strains generally occur near the facing connections.  相似文献   

3.
This paper presents a numerical study of maximum reinforcement tensile forces for geosynthetic reinforced soil (GRS) bridge abutments. The backfill soil was characterized using a nonlinear elasto-plastic constitutive model that incorporates a hyperbolic stress-strain relationship with strain softening behavior and the Mohr-Coulomb failure criterion. The geogrid reinforcement was characterized using a hyperbolic load-strain-time constitutive model. The GRS bridge abutments were numerically constructed in stages, including soil compaction effects, and then loaded in stages to the service load condition (i.e., applied vertical stress?=?200?kPa) and finally to the failure condition (i.e., vertical strain?=?5%). A parametric study was conducted to investigate the effects of geogrid reinforcement, backfill soil, and abutment geometry on reinforcement tensile forces at the service load condition and failure condition. Results indicate that reinforcement vertical spacing and backfill soil friction angle have the most significant effects on magnitudes of maximum tensile forces at the service load condition. The locus of maximum tensile forces at the failure condition was found to be Y-shaped. Geogrid reinforcement parameters have little effect on the Y-shaped locus of the maximum tensile forces when no secondary reinforcement layers are included, backfill soil shear strength parameters have moderate effects, and abutment geometry parameters have significant effects.  相似文献   

4.
Current design regulations most often require use of limit equilibrium methods for the internal stability analyses of geosynthetic-reinforced soil (GRS) walls. However, the limit-equilibrium based approaches generally over-predict reinforcement loads for GRS walls when comparing with measured data from full-scale instrumented walls under working stress conditions. Wall toe resistance has an important influence on the performance of GRS walls but is ignored in limit equilibrium-based methods of design. This paper reports centrifuge modelling of GRS walls which have different toe restraint conditions but are otherwise identical. The GRS wall models prepared in this study isolate the influence of wall toe resistance on the performance of walls. Based on measured data from four centrifuge wall model tests, a reduction in wall toe resistance (by reducing the interface shear resistance at the base of the wall facing or removing the soil passive resistance in front of the wall toe or both) induces larger maximum facing deformation and reinforcement strain and load. The results also demonstrate that the wall models with typical toe restraint conditions are most likely operated under working stress conditions while those with poor toe restraint conditions may experience (or be close to reach) a state of limit equilibrium.  相似文献   

5.
Six geosynthetic-reinforced soil (GRS) retaining walls supporting bridge approach roads of an overpass bridge in China exhibited a series of structural problems after 18 years of service. Field investigations demonstrated that the major structural problems consist of excessive lateral facing displacement, settlement and damage of facing panels, and pavement cracks above the GRS retaining walls. The structural problems were mainly caused by inadequate backfill compaction behind the facing, rain water infiltration, the settlement of foundation soil, and reinforcement ageing. Among the six GRS walls, a 22-m-long section collapsed after mild rain in July 2016, and the failure surface in the collapsed zone was mainly located 0.5–0.9 m away from the back of facing panels along the wall height. The field investigation found that external water filtration into the backfill behind the facing panels, and the breakage of connection between reinforcement and facing panels were the main causes of the failure. The connection breakage resulted from the ageing of PP reinforcement strips, and the critical issue of PP reinforcement ageing in complex backfill environment was pinpointed. Remedial measures of the failed section and reinforcing techniques of the remaining GRS walls were briefly presented in the end.  相似文献   

6.
This paper presents an experimental study of the load bearing behavior of geosynthetic reinforced soil (GRS) bridge abutments constructed on yielding clay foundation. The effects of two different ground improvement methods for the yielding clay foundation, including reinforced soil foundation and stone column foundation, were evaluated. The clay foundation was prepared using kaolin and consolidated to reach desired shear strength. The 1/5-scale GRS abutment models with a height of 0.8 m were constructed using sand backfill, geogrid reinforcement, and modular block facing. For the GRS abutments on three different yielding foundations, the reinforced soil zone had relatively uniform settlement and behaved like a composite due to the higher stiffness than the foundation layers. The wall facing moved outward with significant movements near the bottom of facing, and the foundation soil in front of facing showed obvious uplifting movements. The vertical stresses transferred from the footing load within the GRS abutment and on the foundation soil are higher for stiffer foundation. The improvement of foundation soil using geosynthetic reinforced soil and stone columns could reduce the deformations of GRS abutments on yielding foundation. Results from this study provide insights on the practical applications of GRS abutments on yielding foundation.  相似文献   

7.
This paper reports numerical modeling of the prototype geosynthetic reinforced soil (GRS) walls corresponding to four centrifuge models that have different toe restraint conditions. The development of the interface stresses and displacements at wall toe during wall construction is investigated to understand how the toe carries load in the GRS walls with a practical toe structure. The numerical results show good agreement with the data from the centrifuge modeling. For the GRS walls with a leveling pad embedded in foundation soil, the shear resistance at the facing block-leveling pad interface acts as the toe resistance to counterbalance a portion of horizontal earth load, while the leveling pad-foundation soil interface play no role in wall performance because the soil passive resistance in front of the leveling pad inhibits the development of the shear stress and displacement on this interface. For the GRS walls with an exposed leveling pad, it is the leveling pad-foundation soil interface that works for carrying the earth load because the wall is more likely to slide along this weaker interface. The contribution of the toe to load capacity depends on the shear strength of the effective toe interface that contributes to the resistance against the earth load.  相似文献   

8.
A scaled plane-strain shaking table test was conducted in this study to investigate the seismic performance of a Geosynthetic Reinforced Soil-Integrated Bridge System (GRS-IBS) with a full-length bridge beam resting on two GRS abutments at opposite ends subjected to earthquake motions in the longitudinal direction. This study examined the effects of different combinations of reinforcement stiffness J and spacing Sv on the seismic performance of the GRS-IBS. Test results show that reducing the reinforcement spacing was more beneficial to minimize the seismic effect on the GRS abutment as compared to increasing the reinforcement stiffness. The seismic inertial forces acted on the top of two side GRS abutments interacted with each other through the bridge beam, which led to close peak acceleration amplitudes at the locations near the bridge beam. Overall, the GRS-IBS did not experience obvious structure failure and significant displacements during and after shaking. Shaking in the longitudinal direction of the bridge beam increased the vertical stress in the reinforced soil zone. The maximum tensile forces in the upper and lower geogrid layers due to shaking happened under the center of the beam seat and at the abutment facing respectively.  相似文献   

9.
The level of reinforcement loads in a reinforced soil retaining wall is important to its satisfactory operation under working stress conditions since it basically determines the wall deformation. Consequently, proper estimation of the reinforcement load is a necessary step in the service limit-state design of this type of earth retaining structures. In this study, a force equilibrium approach is proposed to quantify the influence of facing batter on the reinforcement loads of reinforced soil walls under working stress conditions. The approach is then combined with a nonlinear elastic approach for GRS walls without batter to estimate the reinforcement loads neglecting toe restraint. The approximate average mobilized soil strength in the retaining wall is employed in the force equilibrium analysis. The predictions of reinforcement loads by the proposed method were compared to the experimental results from four large-scale tests. It is shown that the proposed semianalytical approach has the capacity to reproduce the reinforcement loads with acceptable accuracy. Some remaining issues are also pinpointed.  相似文献   

10.
Experimental studies have been carried out to evaluate the effect of the compaction condition at the back of block facing on the behavior of geosynthetic reinforced soil (GRS) walls. Three GRS walls with 1.2?m high were constructed at the COPPE/UFRJ Geotechnical Laboratory. The walls were well-instrumented in order to monitor the values of the reinforcement load, toe horizontal load, horizontal facing displacement, horizontal stress at the back of the block facing, and vertical displacement on the top of the walls. The behavior of the walls has been investigated at the end of construction and during the surcharge application (post-construction). At the end of the loading, the toes of the walls were gradually released to also verify the influence of the different toe restraints. The results clearly show the effect and call attention to the importance of the compaction conditions near the facing on the behavior of GRS walls.  相似文献   

11.
Many researches of geosynthetic-reinforced soil (GRS) walls under earthquakes demonstrate seismic acceleration amplification along the wall height. Current design methods of GRS walls often neglect the amplification effect on seismic stability and could yield an unconservative result. A pseudo-static method based on limit equilibrium (LE) analyses is carried out to calculate the distribution of required tension of seismic GRS walls following a top-down procedure. The connection load between the reinforcement and facing is correspondingly determined by the front-end pullout capacity. The approach assumes that the horizontal seismic acceleration coefficient varies linearly from the bottom to the top of GRS walls. The obtained results of the required tension involving the seismic amplification are in good agreement with other LE results in previous studies. Parametric studies are conducted to investigate the effects of horizontal seismic coefficient, primary and secondary reinforcement lengths and wall batter on the seismic stability of GRS walls. The seismic amplification yields more required reinforcement tension, significantly for the lower layers of the GRS wall subjected to strong earthquakes. In this situation, lengthening the bottom 1/2 of reinforcement layers could reduce the required tension to avoid tensile breakage of the reinforcements.  相似文献   

12.
Road infrastructures are a very important component of the world's total transportation network. Investment in its construction and maintenance is significant on a global scale. The paper presents some results from an environmental study of a geosynthetic-reinforced soil integrated bridge system. The Pavlovski potok stream in Slovenia was used as a demonstration case for this study. It is the first GRS bridge system with full-height rigid (FHR) facings in Europe. It was constructed at the end of 2014. The goal of these analyses was to compare two different types of bridges: the new GRS bridge system, which is comprised of a simple girder partially structurally integrated to FHR facings of GRS bridge abutments and a conventional reinforced concrete road bridge. The results of an environmental life cycle assessment (LCA) show that the GRS bridge system has a much lower environmental impact than an equivalent bridge conventionally built with reinforced concrete.  相似文献   

13.
The advantages of geosynthetic-reinforcing technology to construct new soil structures including; (a) a relatively short construction period; (b) small construction machines necessary; and (c) a higher stability of completed structures, all contributing to a higher cost-effectiveness, are addressed. A number of case successful histories of geosynthetic-reinforced soil retaining walls have been reported in the literature (e.g., [Tatsuoka, F., Koseki, J., Tateyama, M., 1997a. Performance of Earth Reinforcement Structures during the Great Hanshin Earthquake, Special Lecture. In: Proceedings of the International Symposium on Earth Reinforcement, IS Kyushu ‘96, Balkema, vol. 2, pp. 973–1008; Tatsuoka, F., Tateyama, M, Uchimura, T., Koseki, J., 1997b. Geosynthetic-reinforced soil retaining walls as important permanent structures, 1996–1997 Mercer Lecture. Geosynthetics International 4(2), 81–136; Tatsuoka, F., Koseki, J., Tateyama, M., Munaf, Y., Horii, N., 1998. Seismic stability against high seismic loads of geosynthetic-reinforced soil retaining structures, Keynote Lecture. In: Proceedings of the 6th International Conference on Geosynthetics, Atlanta, vol. 1, pp.103–142; Helwany, S.M.B., Wu, J.T.H., Froessl, B., 2003. GRS bridge abutments—an effective means to alleviate bridge approach settlement. Geotextiles and Geomembranes 21(3), 177–196; Lee, K.Z.Z., Wu, J.T.H., 2004. A synthesis of case histories on GRS bridge-supporting structures with flexible facing. Geotextiles and Geomembranes 22(4), 181–204; Yoo, C., Jung, H.-S., 2004. Measured behavior of a geosynthetic-reinforced segmental retaining wall in a tiered configuration. Geotextiles and Geomembranes 22(5), 359–376; Kazimierowicz-Frankowska, K., 2005. A case study of a geosynthetic reinforced wall with wrap-around facing. Geotextiles and Geomembranes 23(1), 107–115; Skinner, G.D., Rowe, R.K., 2005. Design and behaviour of a geosynthetic reinforced retaining wall and bridge abutment on a yielding foundation. Geotextiles and Geomembranes 23(3), 234–260]). Techniques for analyzing the seismic response of reinforced walls and slopes have also been developed (e.g. Nouri, H. Fakher, A., Jones, C.J.F.P., 2006. Development of horizontal slice method for seismic stability analysis of reinforced slopes and walls. Geotextiles and Geomembranes 24(2),175–187). Several typical cases in which embankments having a gentle slope and conventional-type soil retaining walls that were seriously damaged or failed were reconstructed to geosynthetic-reinforced steepened slopes or geosynthetic-reinforced soil retaining walls are also reported in this paper. It has been reported that the reconstruction of damaged or failed conventional soil structures to geosynthetic-reinforced soil structures was highly cost-effective in these cases. Rehabilitation of an old earth-fill dam in Tokyo to increase its seismic stability by constructing a counter-balance fill reinforced with geosynthetic reinforcement is described. Finally, a new technology proposed to stabilize the downstream slope of earth-fill dams against overflowing flood water while ensuring a high seismic stability by protecting the slope with soil bags anchored with geosynthetic reinforcement layers arranged in the slope is described.  相似文献   

14.
A Finite Element procedure was used to investigate the reinforcement load and the deformation mode for geosynthetic-reinforced soil (GRS) walls subject to seismic loading during their service life, focusing on those with marginal backfill soils. Marginal backfill soils are hereby defined as filled materials containing cohesive fines with plasticity index (PI) >6, which may exhibit substantial creep under constant static loading before subjected to earthquake. It was found that under strong seismic loading reinforced soil walls with marginal backfills exhibited a distinctive “two-wedge” deformation mode. The surface of maximum reinforcement load was the combined effect of the internal potential failure surface and the outer surface that extended into the retained earth. In the range investigated, which is believed to cover general backfill soils and geosynthetic reinforcements, the creep rates of soils and reinforcements had small influence on the reinforcement load and the “two-wedge” deformation mode, but reinforcement stiffness played a critical role on these two responses of GRS walls. It was also found that the “two-wedge” deformation mode could be restricted if sufficiently long reinforcement was used. The study shows that it is rational to investigate the reinforcement load of reinforced soil walls subject to seismic loading without considering the previous long-term creep.  相似文献   

15.
The creep of geosynthetics leads to the increase of Geosynthetic-Reinforced Soil (GRS) wall's deformation. More importantly, the influences of creep of geosynthetics are also affected by the creep properties of soils. In this paper, a Finite Element procedure was validated against a model test on the creep response of a clay–geotextile composite. An extensive parametric study was then carried out to investigate the long-term response of 8-meter-high model GRS walls with marginal backfill soils. The influences of backfill creep, reinforcement creep, reinforcement stiffness, reinforcement length and reinforcement spacing were analyzed. A long-term analysis was conducted for 5 years and the results at the end of construction (EOC) and 5 years afterwards were compared. It is found from the analysis that the relative creep rate between geosynthetic reinforcement and backfill soil influenced not only wall deformation but also reinforcement loads and stress states in the soils. The load distribution in backfill soil and reinforcement is the result of battling between their time-dependent properties. Large reinforcement creep can lead to large post-construction deformation and increase in soil stress; on the other hand, large soil creep can induce a significant increase in reinforcement load. It is hence necessary to take into account the relative creep rate of reinforcement and backfill soil in the design of GRS walls. It may not be adequate to consider only the long-term strength of reinforcement, which is the state-of-the-practice at present.  相似文献   

16.
Current design methods for the internal stability of geosynthetic-reinforced soil (GRS) walls postulate seismic forces as inertial forces, leading to pseudo-static analyses based on active earth pressure theory, which yields unconservative reinforcement loads required for seismic stability. Most seismic analyses are limited to the determination of maximum reinforcement strength. This study aimed to calculate the distribution of the reinforcement load and connection strength required for each layer of the seismic GRS wall. Using the top-down procedure involves all of the possible failure surfaces for the seismic analyses of the GRS wall and then obtains the reinforcement load distribution for the limit state. The distributions are used to determine the required connection strength and to approximately assess the facing lateral deformation. For sufficient pullout resistance to be provided by each reinforcement, the maximum required tensile resistance is identical to the results based on the Mononobe–Okabe method. However, short reinforcement results in greater tensile resistances in the mid and lower layers as evinced by compound failure frequently occurring in GRS walls during an earthquake. Parametric studies involving backfill friction angle, reinforcement length, vertical seismic acceleration, and secondary reinforcement are conducted to investigate seismic impacts on the stability and lateral deformation of GRS walls.  相似文献   

17.
Geosynthetic-reinforced retaining (GRR) walls have been increasingly used to support roadways and bridge abutments in highway projects. In recent years, advances have been made in construction and design of GRR walls for highway applications. For example, piles have been installed inside GRR walls to support bridge abutments and sound barrier walls. Geosynthetic layers at closer spacing are used in GRR walls to form a composite mass to support an integrated bridge system. This system is referred to as a geosynthetic-reinforced soil (GRS)-integrated bridge systems (IBS) or GRS-IBS. In addition, short geosynthetic layers have been used as secondary reinforcement in a GRR wall to form a hybrid GRR wall (HGRR wall) and reduce tension in primary reinforcement and facing deflections. These new technologies have improved performance of GRR walls and created more economic solutions; however, they have also created more complicated problems for analysis and design. This paper reviews recent studies on these new GRR wall systems, summarizes key results and findings including but not limited to vertical and lateral earth pressures, wall facing deflections, and strains in geosynthetic layers, discusses design aspects, and presents field applications for these new GRR wall systems.  相似文献   

18.
A long suspension bridge located in a typhoon region may be exposed to a high risk of wind-induced large vibrations during the construction stage because of its long construction period. The dynamic properties of the bridge in different construction stages therefore have to be well understood in bridge design, so that a proper wind tunnel test or further dynamic response analysis can be performed. To this end, this paper presents a detailed finite element modeling and modal analysis of the Tsing Ma long suspension bridge when the first few deck units are erected at the bridge midspan. The three-dimensional finite element model includes not only the deck units but also the main cables to which the deck units are suspended through hangers, the bridge towers, and the side span cables. The results from the numerical analysis show a clear picture of how dynamic properties are transformed from the tower-cable system to the tower-cable-deck unit system. The results indicate that wind-induced vibration of a cable suspension bridge during the construction stage may be more critical than that of the completed bridge. The predicted natural frequencies and mode shapes of the tower-cable-deck unit system are also compared with the measured results, and the comparison is satisfactory.  相似文献   

19.
As people migrate to densely populated cities, the importance of establishing a new transportation infrastructure to meet their needs becomes increasingly critical. The limited space available for construction makes a narrow geosynthetic reinforced soil (GRS) wall a cost-effective alternative. Prior research has primarily examined the performance of narrow GRS walls under static loads, revealing that these structures are highly vulnerable to significant crest displacements. Consequently, multiple studies have recommended incorporating mechanical connections in the upper layer during the construction of narrow GRS walls. However, some places are more susceptible to earthquakes; hence, this research was conducted to investigate the dynamic response of narrow GRS walls and quantify the effect of mechanical connections on increasing the stability of narrow GRS walls. Two sets of narrow GRS wall models were constructed, with and without mechanical connections to a stable wall, and subjected to a similar series of earthquakes. The test results indicate that the mechanical connection can reduce the accumulated normalized horizontal displacement of narrow GRS walls by 30–80% after being subjected to the same dynamic input motion excitation.  相似文献   

20.
The paper reports the construction and surcharge load-testing of three (3) large-scale (~2.50 m-tall) GRS bridge abutment models in an outdoor test station to investigate the influences that the facing type and reinforcement spacing could have on their load-bearing performance. The facing types examined included cored Concrete Masonry Units (CMU) in Model #1 and much larger solid concrete blocks in Models #2 and #3. Reinforcement spacing in the first two models was 0.20 m, whereas it was increased to 0.30 m in the third model. Results show that using large facing blocks in GRS abutments could lead to significant improvements in their load-deformation performance relative to those with the CMU facing alternative. This improvement was observed even in the case of model with increased reinforcement spacing. Therefore, use of larger facing blocks could also help reduce the cost of GRS abutments by reducing the need for tighter reinforcement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号