首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
K. Varatharajan  M. Cheralathan 《Fuel》2011,90(8):2721-2725
Biodiesel offers cleaner combustion over conventional diesel fuel including reduced particulate matter, carbon monoxide and unburned hydrocarbon emissions. However, several studies point to slight increase in NOx emissions (about 10%) for biodiesel fuel compared with conventional diesel fuel. Use of antioxidant additives is one of the most cost-effective ways to mitigate the formation of prompt NOx. In this study, the effect of antioxidant additives on NOx emissions in a jatropha methyl ester fuelled direct injection diesel engine have been investigated experimentally and compared. A survey of literature regarding the causes of biodiesel NOx effect and control strategies is presented. The antioxidant additives L-ascorbic acid, α tocopherol acetate, butylated hydroxytoluene, p-phenylenediamine and ethylenediamine were tested on computerised Kirloskar-make 4 stroke water cooled single cylinder diesel engine of 4.4 kW rated power. Results showed that antioxidants considered in the present study are effective in controlling the NOx emissions of biodiesel fuelled diesel engines. A 0.025%-m concentration of p-phenylenediamine additive was optimal as NOx levels were substantially reduced in the whole load range in comparison with neat biodiesel. However, hydrocarbon and CO emissions were found to have increased by the addition of antioxidants.  相似文献   

2.
Biodiesel is a notable alternative to petroleum derived diesel fuel because it comes from natural domestic sources and thus reduces dependence on diminishing petroleum fuel from foreign sources, it likely lowers lifecycle greenhouse gas emissions, and it lowers an engine's emission of most pollutants as compared to petroleum derived diesel. However, the use of biodiesel often slightly increases a diesel engine's emission of smog forming nitrogen oxides (NOx) relative to petroleum diesel. In this paper, previously proposed theories for this slight NOx increase are reviewed, including theories based on biodiesel's cetane number, which leads to differing amounts of charge preheating, and theories based on the fuel's bulk modulus, which affects injection timing. This paper proposes an additional theory for the slight NOx increase of biodiesel. Biodiesel typically contains more double bonded molecules than petroleum derived diesel. These double bonded molecules have a slightly higher adiabatic flame temperature, which leads to the increase in NOx production for biodiesel. Our theory was verified using numerical simulations to show a NOx increase, due to the double bonded molecules, that is consistent with observation. Further, the details of these numerical simulations show that NOx is predominantly due to the Zeldovich mechanism.  相似文献   

3.
FAME of lard, beef tallow, and chicken fat were prepared by base-catalyzed transesterification for use as biodiesel fuels. Selected fuel properties of the neat fat-derived methyl esters (B100) were determined and found to meet ASTM specifications. The cold-flow properties, lubricity, and oxidative stability of the B100 fat-derived fuels also were measured. In general, the cold-flow properties of the fat-based fuels were less desirable than those of soy-based biodiesel, but the lubricity and oxidative stability of the fat-based biodiesels were comparable to or better than soy-based biodiesel. Nitrogen oxide (NOx) emission tests also were conducted with the animal fat-derived esters and compared with soybean oil biodiesel as 20 vol% blends (B20) in petroleum diesel. The data indicated that the three animal fat-based B20 fuels had lower NOx emission levels (3.2–6.2%) than did the soy-based B20 fuel.  相似文献   

4.
Biodiesel as a renewable alternative fuel produces lower exhaust emissions with the exception of nitrogen oxides (NOx) when compared to the conventional diesel fuel. Reducing nitrogen oxides produced from engines running on biodiesel requires proper engine controller adaptations that are linked to the specifics of the fuel blend. Therefore, online estimation of fuel blend is a critical step in allowing diesel engines to maintain performance while simultaneously meeting emission requirements when operating on biodiesel blends. Presented in this paper are three different model-based biodiesel blend estimation strategies using: (i) crankshaft torsionals, (ii) NOx emissions measurement from the exhaust stream, and (iii) oxygen content measurement of the exhaust stream using a wide-band UEGO sensor. Each approach is investigated in terms of the accuracy and robustness to sensor errors. A sensitivity analysis is conducted for each method to quantify robustness of the proposed fuel blend estimation methods.  相似文献   

5.
《Fuel Processing Technology》2005,86(10):1109-1126
In this paper, we explore the efficacy of (1) reducing the iodine value of soy-derived biodiesel fuels through increasing the methyl oleate (methyl ester of oleic acid) content and (2) addition of cetane improvers, as strategies to combat the biodiesel NOx effect: the increase in NOx emissions observed in most studies of biodiesel and biodiesel blends. This is accomplished by spiking a conventional soy-derived biodiesel fuel with methyl oleate or with cetane improver. The impact on bulk modulus of compressibility, fuel injection timing, cetane number, combustion, and emissions were examined. The conventional B20 blend produced a NOx increase of 3–5% relative to petroleum diesel, depending on injection timing. However, by using a B20 blend where the biodiesel portion contained 76% methyl oleate, the biodiesel NOx effect was eliminated and a NOx neutral blend was produced. The bulk modulus of petroleum diesel was measured to be 2% lower than B20, yielding a shift in fuel injection timing of 0.1–0.3 crank angle. The bulk modulus of the high methyl oleate B20 blend was measured to be 0.5% lower than B20, not enough to have a measurable impact on fuel injection timing. Increasing the methyl oleate portion of the biodiesel to 76% also had the effect of increasing the cetane number from 48.2 for conventional B20 to 50.4, but this effect is small compared to the increase to 53.5 achieved by adding 1000 ppm of 2-ethylhexyl nitrate (EHN) to B20. For the particular engine tested, NOx emissions were found to be insensitive to ignition delay, maximum cylinder temperature, and maximum rate of heat release. The dominant effect on NOx emissions was the timing of the combustion process, initiated by the start of injection, and propagated through the timing of maximum heat release rate and maximum temperature.  相似文献   

6.
The use of biodiesel is rapidly expanding around the world, making it imperative to fully understand the impacts of biodiesel on the diesel combustion process, pollutant formation and exhaust aftertreatment. Because its physical properties and chemical composition are distinctly different from conventional diesel fuel, biodiesel can alter the fuel injection and ignition processes whether neat or in blends. As a consequence, the emissions of NOx and the amount, character and composition of particulate emissions are significantly affected. In this paper, we survey observations from a spectrum of our earlier studies on the impact of biodiesel on diesel combustion, emissions and emission control to provide a summary of the challenges and opportunities that biodiesel can provide.  相似文献   

7.
Engine performance and emission comparisons were made between the use of soy, Canola and yellow grease derived B100 biodiesel fuels and an ultra-low sulphur diesel fuel in the high load engine operating conditions. Compared to the diesel fuel engine-out emissions of nitrogen oxides (NOx), a high-cetane number (CN) biodiesel fuel produced comparable NOx while the biodiesel with a CN similar to the diesel fuel produced relatively higher NOx at a fixed start of injection. The soot, carbon monoxide and un-burnt hydrocarbon emissions were generally lower for the biodiesel-fuelled engine. Exhaust gas recirculation (EGR) was then extensively applied to initiate low temperature combustion (LTC) mode at medium and low load conditions. An intake throttling valve was implemented to increase the differential pressure between the intake and exhaust in order to increase and enhance the EGR. Simultaneous reduction of NOx and soot was achieved when the ignition delay was prolonged by more than 50% from the case with 0% EGR at low load conditions. Furthermore, a preliminary ignition delay correlation under the influence of EGR at steady-state conditions was developed. The correlation considered the fuel CN and oxygen concentrations in the intake air and fuel. The research intends to achieve simultaneous reductions of NOx and soot emissions in modern production diesel engines when biodiesel is applied.  相似文献   

8.
The effects of diesel oil-soybean biodiesel blends on a passenger vehicle exhaust pollutant emissions were investigated. Blends of diesel oil and soybean biodiesel with concentrations of 3% (B3), 5% (B5), 10% (B10) and 20% (B20) were used as fuels. Additionally, the effects of anhydrous ethanol as an additive to B20 fuel blend with concentrations of 2% (B20E2) and 5% (B20E5) were also studied. The emissions tests were carried out following the New European Driving Cycle (NEDC). The results showed that increasing biodiesel concentration in the fuel blend increases carbon dioxide (CO2) and oxides of nitrogen (NOX) emissions, while carbon monoxide (CO), hydrocarbons (HC) and particulate matter (PM) emissions are reduced. The addition of anhydrous ethanol to B20 fuel blend proved it can be a strategy to control exhaust NOX and global warming effects through the reduction of CO2 concentration. However, it may require fuel injection modifications, as it increases CO, HC and PM emissions.  相似文献   

9.
Biodiesel is one of the more promising alternative clean fuels to fossil fuel, which can reduce the emissions of fossil fuel burning, and possibly resolve the energy crisis caused by the exhaustion of petroleum resources in the near future. The burning of biodiesel emits much less gaseous emissions and particulate matter primarily because of its dominant combustion efficiency. However, the high oxygen content in biodiesel not only promotes the burning process but also enhances NOx formation when biodiesel is used as fuel. Biodiesel emulsion and the additive of NOx-inhibitor agent are considered to reduce levels of NOx emissions in this experimental study. The biodiesel was produced by transesterification reaction accompanied with peroxidation process. A three-phase biodiesel emulsion of oil-in water drops-in oil (O/W/O) and an O/W/O biodiesel emulsion containing aqueous ammonia were prepared afterwards. The effect of the existence of NOx-inhibitor agent on the fuel properties and the emulsion characteristics of the O/W/O biodiesel emulsions were investigated. The experimental results show that the burning of the O/W/O biodiesel emulsion and the O/W/O biodiesel emulsion containing aqueous ammonia had larger fraction of fuel burnt and thus larger heat release than the neat biodiesel if water content is not considered for the calculation of heating value. The addition of aqueous ammonia within the dispersed phase of the O/W/O biodiesel emulsion appeared to deteriorate the emulsification characteristics. A smaller quantity of emulsion and greater kinematic viscosity were formed while a larger carbon residue and actual reaction-heat release also appeared for this O/W/O biodiesel emulsion. Aqueous ammonia in the O/W/O biodiesel emulsion produces a higher pH value as well. In addition, the number as well as the volumetric fraction of the dispersed water droplets is reduced for the O/W/O biodiesel emulsion that contains aqueous ammonia.  相似文献   

10.
《Fuel》2005,84(12-13):1543-1549
A blend of 20% (v/v) ethanol/methyl soyate was prepared and added to diesel fuel as an oxygenated additive at volume percent levels of 15 and 20% (denoted as BE15 and BE20). We also prepared a blend containing 20% methyl soyate in diesel fuel (denoted as B20). The fuel blends that did not have any other additive were stable for up to 3 months. Engine performance and emission characteristics of the three different fuels in a diesel engine were investigated and compared with the base diesel fuel. Observations showed that particulate matter (PM) emission decreased with increasing oxygenate content in the fuels but nitrogen oxides (NOx) emissions increased. The diesel engine fueled by BE20 emitted significantly less PM and a lower Bosch smoke number but the highest NOx among the fuel blends tested. All the oxygenate fuels produced moderately lower CO emissions relative to diesel fuel. The B20 blend emitted less total hydrocarbon (THC) emissions compared with base diesel fuel. This was opposite to the fuel blends containing ethanol (BE15, BE20), which produced much higher THC emission.  相似文献   

11.
Flame temperature analysis of biodiesel blends and components   总被引:6,自引:0,他引:6  
Meeting sustainable energy demand with minimum environmental impact is a major area of concern in the energy sector. Alternative fuels such as biodiesel, ethanol etc. have been quite promising for fulfilling both these aspects. While biodiesel reduces emissions of CO, life cycle CO2, SOx, volatile organic compounds (VOC) and particulate matter (PM) significantly, the propensity for the production of NOx is an important problem that requires extensive research. NOx emission from a direct-injection diesel engine is mainly due to formation of thermal NO that is described by Zeldovich mechanism. Thus, studying temperature profile during biodiesel combustion can provide useful insights to the formation and destruction of NOx. The main objective of this work is to investigate the effect of component methyl esters of biodiesel on open air flame temperature distribution and the effect of blending biodiesel with diesel and oxygenates (ethanol and methyl acetate) on open air flames. This objective was achieved by obtaining thermocouple measurements and thermal infrared imaging of local flame temperatures of wick-generated open air flames. A relationship between blend proportions and relative flame temperatures were obtained. In general, it was found that blending oxygenates such as ethanol and methyl acetate into petroleum diesel tended to increase the flame temperature in comparison with straight diesel fuel. The analyses of relative flame temperatures of different components of biodiesel were performed to evaluate the effect of unsaturation level and the hydrocarbon chain length on the flame temperature. It was found that the saturated methyl esters resulted in greater flame temperatures in comparison to unsaturated methyl esters. It was also revealed that shorter chained fatty acid methyl esters lead to higher flame temperatures as compared to its longer chained counterparts.  相似文献   

12.
H. Raheman  S.V. Ghadge 《Fuel》2007,86(16):2568-2573
The performance of biodiesel obtained from mahua oil and its blend with high speed diesel in a Ricardo E6 engine has been presented in this paper together with some of its fuel properties. These properties were found to be comparable to diesel and confirming to both the American and European standards. Engine performance (brake specific fuel consumption, brake thermal efficiency and exhaust gas temperature) and emissions (CO, smoke density and NOx) were measured to evaluate and compute the behaviour of the diesel engine running on biodiesel. The reductions in exhaust emissions and brake specific fuel consumption together with increase brake power, brake thermal efficiency made the blend of biodiesel (B20) a suitable alternative fuel for diesel and thus could help in controlling air pollution.  相似文献   

13.
Non-edible jatropha (Jatropha curcas), karanja (Pongamia pinnata) and polanga (Calophyllum inophyllum) oil based methyl esters were produced and blended with conventional diesel having sulphur content less than 10 mg/kg. Ten fuel blends (Diesel, B20, B50 and B100) were tested for their use as substitute fuel for a water-cooled three cylinder tractor engine. Test data were generated under full/part throttle position for different engine speeds (1200, 1800 and 2200 rev/min). Change in exhaust emissions (Smoke, CO, HC, NOx, and PM) were also analyzed for determining the optimum test fuel at various operating conditions. The maximum increase in power is observed for 50% jatropha biodiesel and diesel blend at rated speed. Brake specific fuel consumptions for all the biodiesel blends with diesel increases with blends and decreases with speed. There is a reduction in smoke for all the biodiesel and their blends when compared with diesel. Smoke emission reduces with blends and speeds during full throttle performance test.  相似文献   

14.
As global petroleum demand continues to increase, alternative fuel vehicles are becoming the focus of increasing attention. Biodiesel has emerged as an attractive alternative fuel option due to its domestic availability from renewable sources, its relative physical and chemical similarities to conventional diesel fuel, and its miscibility with conventional diesel. Biodiesel combustion in modern diesel engines does, however, generally result in higher fuel consumption and nitrogen oxide (NOx) emissions compared to diesel combustion due to fuel property differences including calorific value and oxygen content. The purpose of this study is to determine the optimal engine decision-making for 100% soy-based biodiesel to accommodate fuel property differences via modulation of air-fuel ratio (AFR), exhaust gas recirculation (EGR) fraction, fuel rail pressure, and start of main fuel injection pulse at over 150 different random combinations, each at four very different operating locations. Applying the nominal diesel settings to biodiesel combustion resulted in increases in NOx at three of the four locations (up to 44%) and fuel consumption (11-20%) over the nominal diesel levels accompanied by substantial reductions in particulate matter (over 80%). The biodiesel optimal settings were defined as the parameter settings that produced comparable or lower NOx, particulate matter (PM), and peak rate of change of in-cylinder pressure (peak dP/dt, a metric for noise) with respect to nominal diesel levels, while minimizing brake specific fuel consumption (BSFC). At most of the operating locations, the optimal engine decision-making was clearly shifted to lower AFRs and higher EGR fractions in order to reduce the observed increases in NOx at the nominal settings, and to more advanced timings in order to mitigate the observed increases in fuel consumption at the nominal settings. These optimal parameter combinations for biodiesel were able to reduce NOx and noise levels below nominal diesel levels while largely maintaining the substantial PM reductions. These parameter combinations, however, had little (maximum 4% reduction) or no net impact on reducing the biodiesel fuel consumption penalty.  相似文献   

15.
Safflower seed oil was chemically treated by the transesterification reaction in methyl alcohol environment with sodium hydroxide (NaOH) to produce biodiesel. The produced biodiesel was blended with diesel fuel by 5% (B5), 20% (B20) and 50% (B50) volumetrically. Some of important physical and chemical fuel properties of blend fuels, pure biodiesel and diesel fuel were determined. Performance and emission tests were carried out on a single cylinder diesel engine to compare biodiesel blends with petroleum diesel fuel. Average performance reductions were found as 2.2%, 6.3% and 11.2% for B5, B20 and B50 fuels, respectively, in comparison to diesel fuel. These reductions are low and can be compensated by a slight increase in brake specific fuel consumption (Bsfc). For blends, Bsfcs were increased by 2.8%, 3.9% and 7.8% as average for B5, B20 and B50, respectively. Considerable reductions were recorded in PM and smoke emissions with the use of biodiesel. CO emissions also decreased for biodiesel blends while NOx and HC emissions increased. But the increases in HC emissions can be neglected as they have very low amounts for all test fuels. It can be concluded that the use of safflower oil biodiesel has beneficial effects both in terms of emission reductions and alternative petroleum diesel fuel.  相似文献   

16.
C.K. Man  J.G. Witkamp 《Fuel》2005,84(17):2190-2195
A series of world-traded coal samples has been tested using the Imperial College high temperature wire mesh apparatus (HTWM) in order to assess the relationship between high temperature (1600°C) char nitrogen content and NOx formation in Hemweg Power Station (in the Netherlands) using deep furnace air staging. A linear relationship between high temperature char nitrogen and NOx formation has been confirmed. These results suggest that high temperature char N content is the main factor limiting NOx emissions with deep air-staged combustion.Char N and (hence apparently deep air-staged NOx) can be predicted with an accuracy of approximately ±20% for most coals from the coal proximate and ultimate analysis—but this might not be sufficient for stations operating close to their emission limits. Measuring high temperature char N directly reduces the likely uncertainty in deep air-staged NOx emissions for coals (and most blends) to approximately ±10%. Its use should be considered on a routine basis for coal selection on plants employing this technology.  相似文献   

17.
Experiments were conducted to study the performance, emission and combustion characteristics of a DI diesel engine using poon oil-based fuels. In the present work, poon oil and poon oil methyl ester are tested as diesel fuels in Neat and blended forms. The blends were prepared with 20% poon oil and 40% poon oil methyl ester separately with standard diesel on a volume basis. The reductions in smoke, hydrocarbon and CO emissions were observed for poon oil methyl ester and its diesel blend along with increased NOx emission compared to those of standard diesel. However, a reduction in NOx emission and an increase in smoke, hydrocarbon and CO emissions were observed for Neat poon oil and its diesel blend compared to those of standard diesel. The 40% poon oil methyl ester blend showed a 2% increase in brake thermal efficiency compared to that of standard diesel, whereas other fuels tested showed a decreasing trend. From the combustion analysis it was found that ignition delay was shorter for all fuels tested compared to that of standard diesel. The combustion characteristics of poon oil methyl ester and its diesel blend closely followed those of standard diesel.  相似文献   

18.
C.M. NamB.M. Gibbs 《Fuel》2002,81(10):1359-1367
Diesel DeNOx experiments have been conducted using the selective noncatalytic ‘thermal DeNOx’ process in a diesel fuelled combustion-driven flow reactor which simulated a single cylinder (966 cm3) and head equipped with a water-cooling jacket and an exhaust pipe. NH3 was directly injected into the cylinder to reduce NOx emissions. A wide range of air/fuel ratios (A/F=20-40) was selected for NOx reduction where an initial NOx of 530 ppm was usually maintained with a molar ratio (β=NH3/NOx) of 1.5.The results indicate that a 34% NOx reduction can be achieved from the cylinder injection in the temperature range, 1100-1350 K. Most of the NOx reduction occurs within the cylinder and head section (residence time<40 ms), since temperatures in the exhaust are too low for additional NOx reduction. Under large gas quenching rates, increasing β values (e.g. 4.0) substantially increase the NOx reduction up to 60%, which is comparable with those achieved under isothermal conditions. Experimental findings are analysed by chemical kinetics using the Miller and Bowman mechanism including both N/H/O species and CO/hydrocarbon reactions to account for CO/UHC oxidation effects, based on practical nonisothermal conditions. Comparisons of the kinetic calculations with the experimental data are given as regards temperature characteristics, residence time and molar ratio. In addition, the effects of CO/UHC and branching ratio (α=k1/(k1+k2)) for the reaction NH2+NO=products are discussed in terms of NO reduction features, together with practical implications.  相似文献   

19.
We conducted an assessment of North American heavy‐duty engine emission test results for biodiesel from 49 experimental studies, including both engine dynamometer and vehicle test results. Comparison with a commercial database showed that the engines in the emissions database are not representative of the existing North American in‐use fleet as of 2007; more than 50% of the tested engines were of 1995 or earlier vintage. Nevertheless, the results show that the use of a common biodiesel blend (B20) consistently reduces emissions of particulate matter, hydrocarbons, and carbon monoxide by 10–20%. Tests with B20 show varying effects on oxides of nitrogen (NOx). If results for pre‐1992 two‐cycle 6V‐92TA(E) engines (which represent 0.2% of the 2007 in‐use fleet but 28% of the engines tested) are removed, then there is no statistical evidence that the average NOx emissions from B0 and B20 are different (p value of 0.50 for an estimated average increase of 1%). Several researchers have used changes in engine calibration to eliminate any NOx penalty associated with B20 (in engines that show an increase in NOx with B20), while still maintaining the advantages of B20 in reducing other pollutants. The emissions effect of B20 on heavy‐duty diesel truck emissions did not show any correlation with model year or type of fuel injection equipment.  相似文献   

20.
There is currently a sustained interest in biofuels as they represent a potential alternative to petroleum derived fuels. Biofuels are likely to help decrease greenhouse gas emissions and the dependence on oil resources. Biodiesels are Fatty Acid Methyl Esters (FAMEs) that are mainly derived from vegetable oils; their compositions depend on the parent vegetables: rapeseed (“RME”), soybean (“SME”), sunflower, palm etc. A fraction of biodiesel has also an animal origin (“tallow”). A key factor for the use of biofuels in gas turbines is their emission indices (NOx, CO, VOC, and PM) in comparison with those of conventional “petroleum gasoils”. While biodiesels reduce carbon-containing pollutants, experimental data from diesel engines show a slight increase in NOx. The literature relating to gas turbines is very scarce. Two recent, independent field tests carried out in Europe (RME) and in the USA (SME) showed slightly lower NOx while a lab test on a microturbine showed the opposite effect. To clarify the NOx index of biodiesels in gas turbines, a study has been undertaken, taking gasoil and natural gas (NG) as reference fuels. In this study, a calculation of the flame temperature developed by the 3 classes of fuels has been performed and the effect of their respective compositions has been investigated. The five FAMEs studied were RME, SME and methyl esters of sunflower, palm and tallow; these are representative of most widespread vegetable and animal oil bases worldwide. The software THERGAS has been used to calculate the enthalpy and free energy properties of the fuels and GASEQ for the flame temperature (Tf), acknowledging the fact that “thermal NOx” represents the predominant form of NOx in gas turbines. To complete the approach to structural effects, we have modeled two NG compositions (rich and weak gases) and three types of gasoil using variable blends of eleven linear/branched/cyclic molecules. The results are consistent with the two recent field tests and show that the FAMEs lie close to petroleum gasoils and higher than NG in terms of NOx emission. The composition of the biodiesel and regular diesel fuel influences their combustion heat: methyl esters with double bonds see a slight increase of their Tf and their NOx index while that of gasoil is sensitive to the aromatic content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号