首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 172 毫秒
1.
焊道的形貌尺寸直接影响电弧增材制造(WAAM)工件的成形精度。采用回归分析方法预测CMT焊道的宽度(W)和余高(H),结果表明,回归分析计算宽度和余高的绝对误差最大值分别为0.16 mm和0.17mm,均在误差可控范围之内,可以为船用高强钢CMT电弧增材制造工艺提供数据参考。另外,回归方程可有效预测单一参量对焊道尺寸的影响趋势。  相似文献   

2.
目的 预测不同工艺参数下电弧增材制造铝合金的力学性能。方法 通过实验建立了电弧增材制造6061铝合金及Ti C增强6061铝合金力学性能的数据集,并建立了一种以焊接电流、焊接速度、脉冲频率、TiC颗粒含量为输入,以屈服强度和抗拉强度为输出的神经网预测模型,对比了反向传播神经网络(BP)、粒子群算法优化BP神经网络(PSO-BP)、遗传算法优化BP神经网络(GA-BP)3种预测模型的精度。结果 与BP模型和PSO-BP模型相比,GA-BP预测模型具有更好的预测精度。其中,GA-BP模型预测6061铝合金屈服强度最佳结果的相关系数(R)为0.965,决定系数(R2)为0.93,平均绝对误差(Mean Absolute Error,MAE)为2.35,均方根误差(Root Mean Square Error,RMSE)为2.67;预测Ti C增强的6061铝合金抗拉强度最佳结果的R=1,R2高达0.99,MAE为0.46,RMSE为0.49,GA-BP具有良好的预测精度。结论 BP、PSO-BP、GA-BP 3种神经网络模型可以用来预测电弧增材制造...  相似文献   

3.
目的 针对电弧增材制造技术实际应用中工艺参数选取困难和成形结果难预测的问题,确定高效、准确的电弧增材制造单道成形形貌预测的数学方法,以快速、方便地选取丝材电弧增材制造工艺参数并指导成形质量控制。方法 在单道单层丝材电弧增材制造实验的基础上,采用多种回归方法和神经网络方法分别建立焊接电流、电压和焊枪移动速度等多个工艺参数与增材层宽度、增材层高度及熔池深度等成形形貌参数之间的数学关系模型。结果 电弧增材制造单道成形形貌与焊接电流、电压和焊枪移动速度显著相关,且各参数间存在非线性交互作用;采用多元线性回归法可较准确地预测单道增材层宽度,但对于增材层高度和熔深的预测效果较差;神经网络可良好地处理各工艺参数间复杂的非线性关系,其对增材层宽度、增材层高度和熔深的预测平均误差率分别为4.17%、6.60%和7.01%,显著优于多元线性回归法。结论 采用神经网络法可以准确预测电弧增材制造单道成形的形貌参数,进而指导增材制造工艺参数的选取和成形质量的控制。  相似文献   

4.
中厚板V型坡口多层多道焊焊接过程中,每一条焊道的几何参数都会影响最终焊缝成形质量。为了评估V型坡口多层多道焊缝成形质量,提出了基于麻雀搜索算法(SSA)优化的BP神经网络模型预测焊道几何参数。文中通过实验分析各焊接工艺参数对焊道成形几何尺寸的影响,确定了以焊接电流、焊接速度、熔池宽度作为模型的输入,将能表征焊道质量的焊道高度和焊道计算高度作为模型的输出。对优化前后BP神经网络预测模型的性能进行对比,结果表明,优化后模型预测结果的相对误差分别保持在±4%、±8%以内,模型的稳定性、准确率都有较大提升,证明了该方法可有效预测V型坡口焊接时的焊道几何参数。  相似文献   

5.
目的 建立一种基于逆向成形的电弧增材制造表面质量评价方法,研究工艺参数对电弧增材表面质量的影响。方法 依据最小误差原则选用合适的函数建立理想模型,逆向成形各电弧增材试样并得到提取模型,比较提取模型与理想模型的差异,定量描述电弧增材试样表面的成形质量,分析电弧增材试样中缺陷出现的原因,评估各工艺参数对电弧增材试样表面质量的影响。结果 随着工艺参数的改变,电弧增材试样的宽度减小,高度增加,试样的标准偏差值在1.95~2.15之间,均平方根值在2.4~2.9之间。工艺参数经优化后,试样的标准偏差值和均方根值分别减小到1.738和1.878。结论 送丝速度和成形速度的匹配程度对电弧增材表面质量有较大影响,实际成形中出现的非理想情况在此方法的计算结果中均可得到反映,与实际成形情况较吻合。  相似文献   

6.
采用高氮奥氏体钢与316L不锈钢丝材,对高氮奥氏体不锈钢熔覆焊道、单道多层、单层多道表面成形特性进行分析,筛选适宜的工艺参数。通过控制两种材料焊道尺寸,获得最适用于成形异材交织结构的工艺参数。利用不同道间距实验得到异材焊道的最佳道间距,并采用合理路径,制备电弧增材成形交织结构。结果表明:工艺参数的变化对高氮奥氏体不锈钢焊道表面成形特性影响极大,易出现气孔;提出异材焊道几何尺寸、截面面积匹配误差法,获得最佳工艺参数:其中高氮奥氏体钢丝材的送丝速率为5.7 m/min,316L不锈钢丝材的送丝速率为5.6 m/min,焊接速率均为0.6 m/min。通过降低起弧次数,采用闭合路径,提高了异材交织结构成形精度,减少了后处理加工。  相似文献   

7.
目的 提高电弧增材制造质量,获得更好的参数匹配。方法 研究机器人焊接速度和层间冷却时间变化对增材件形貌、熔宽、余高的影响规律。选取焊接速度为30 cm/min和40 cm/min,层间冷却时间为30 s和40 s,进行两变量两个水平的全面实验。利用机器人电弧增材制造技术在5 mm厚的316L不锈钢板上进行20层的堆积;在焊道上均匀选取6个点,测得总高、熔宽和余高数据。在此基础上,分析增材件总体形貌及熔宽、余高的变化规律。结果 发现当层间冷却时间达到一定值后,熔池已凝固且温度较低,熔宽、余高变化不大。随着焊接速度提升,熔池单位时间内熔化的金属量锐减,引起增材件熔宽、余高缩小。结论 改变焊接速度对增材件形貌的影响更为明显,层间冷却时间达到一定值后,层间温度不再发生变化,形貌变化不大。  相似文献   

8.
目的 研究不同参数下5556铝合金CMT增材单道成形质量及尺寸预测模型。方法 利用游标卡尺和钢直尺,对增材试样截面的余高、熔宽、成形高度及成形宽度进行测量,并且使用SPSS、Excel及Origin等软件进行尺寸预测模型的建立及验证。结果 对于单层单道增材试样,随着焊接电流从60 A增至140 A,其余高、熔宽均整体呈上升趋势,并且余高的增长速度远小于熔宽的增长速度;随着焊接速度从300 mm/min增至1 100 mm/min,其熔宽、余高均呈下降趋势,但当焊接速度超过700 mm/min时,熔宽的变化较小;随着气体流量从10L/min增至25L/min,余高的变化幅度较小,但熔宽的变化幅度较大。对于多层单道增材试样,随着焊接速度从400 mm/min变为800 mm/min,其成形高度和宽度均变小;随着焊接电流从90 A变为130 A以及层间停留时间从1 min变为5 min,其成形高度和宽度均变大。通过多层单道增材实验和尺寸预测模型可知,焊接电流与增材试样的宽度呈正相关,焊接速度与增材试样的高度和宽度皆呈负相关。结论 单层单道增材试样的熔宽主要受焊接电流的影响,而余高主要受焊接速...  相似文献   

9.
由于铝合金的应用领域较为广泛,使其增材制造技术成为了研究热点。CMT技术作为一种新型焊接工艺,焊接过程中弧长控制较为精确,其热输入量小、飞溅少等工艺特点非常适合铝合金等低熔点金属的增材制造,因此,铝合金CMT增材制造技术成为了近年来国内外各研究机构的研究热点。从控形控性的角度分析了国内外相关研究机构的研究方向,重点综述了焊接速度、送丝速度、CMT工艺等工艺参数和热处理对成形件形貌及性能的影响,同时概述了铝合金CMT电弧增材制造中尺寸控制、组织性能、气孔缺陷等方向的研究工作。借此指出,基于CMT技术的铝合金电弧增材制造技术的相关研究工作仍主要聚焦于试验研究阶段,并未深入到成形机理的探究。该领域的研究工作应更深入、系统地从成形尺寸精度控制、控制气孔缺陷、组织演变规律及性能优化等角度展开,力求加速推进该技术在现代制造业的应用。  相似文献   

10.
针对静电纺丝在制备过程中易受到如聚合物含量、电压、推进速度和接收距离等工艺参数影响的问题,提出一种静电纺丝工艺参数的优化方法,以提升纳米纤维制备效率。以聚乳酸纳米纤维膜为研究对象,采用纤维直径为性能评价指标,设计实验获得训练和测试样本,借助BP(Back Propagation)和RBF(Radial Basis Function)神经网络构建不同工艺参数下的预测模型。结果表明:BP和RBF神经网络模型均能较好的对纤维直径进行预测,但RBF神经网络模型预测精度更高,其平均绝对误差(MAE)为12.125 nm,相对误差不超过7%。RBF神经网络建立的预测模型具有更高的稳定性,模型泛化能力更好,综合预测性能更加优越。所建立的模型可以帮助研究人员制备具有确定纤维直径的静电纺丝纳米纤维膜,实现对工艺参数的优化。  相似文献   

11.
在等离子弧搭接焊中,搭接焊接头的焊缝熔深是评价焊接质量的关键指标之一,而焊接过程中的热输入信息和熔池图像信息都与焊缝熔深有密切关系。本文通过建立304L不锈钢薄板等离子弧搭接焊数据采集系统,利用LabVIEW实时检测电信息,采用视觉传感技术实时获取薄板等离子弧搭接焊过程中的熔池图像,并通过图像处理方法获得熔池的几何参数信息,结合焊接工艺参数,选择峰值电流、峰值电压、焊接速度、离子气流量、保护气流量、熔池宽度和熔池后端长度作为输入量,焊缝熔深作为输出量,建立了基于支持向量机回归和BP神经网络的熔深预测模型。实验验证表明,采用径向基函数的支持向量机回归模型可以有效地对焊缝熔深进行预测,并具有很好的泛化能力,可为进一步实现在线优化焊接工艺参数提供依据。  相似文献   

12.
超声波喷丸成形弧高值是多个工艺参数共同作用的结果,成形工艺参数的选择及对弧高值的准确预测成为难点.本文结合正交试验法和有限元分析软件ABAQUS对不同超声波喷丸工艺参数条件下的喷丸成形过程进行数值模拟分析,研究撞针速度、撞针直径、成形轨迹间矩、喷丸区域宽度对带筋板喷丸成形弧高值的影响.对试验结果进行极差分析,探讨了喷丸工艺参数对喷丸成形弧高值的影响程度,得到较优的超声波喷丸成形工艺参数组合方案.利用正交试验得到的数据作为神经网络的训练样本,建立输入为带筋板超声波喷丸成形工艺参数,输出为成形弧高值的BP人工神经网络模型,对喷丸成形弧高值进行预测.通过样本检验该BP网络模型的准确性,实验结果数据与预测数据之间的最大误差为4.69%,从而BP神经网络能够有效代替数值模拟方法预测其弧高值,缩短工艺设计时间,提高设计效率.  相似文献   

13.
对大型LNG燃料薄膜舱中1.2 mm厚SUS304L不锈钢板薄板的搭接焊,存在的搭接间隙会带来焊缝成形不良等严重影响船舱安全性的问题。本文通过激光传感器检测搭接间隙变化,设计了不同的峰值电流和焊接速度在不同间隙下的工艺实验,研究了间隙对焊缝成形质量的影响机制;基于BP神经网络建立不同间隙下的脉冲等离子弧焊(P-PAW)的工艺参数和间隙及焊缝成形尺寸之间的拓扑关系模型,通过工艺实验获取模型的训练样本,实现了基于BP神经网络的间隙自适应工艺参数优化系统。结果表明,该系统实现了不同搭接间隙下进行实时工艺参数优化的功能,并对搭接间隙在0~0.6 mm变化时所带来的空洞等缺陷起到了有效的抑制作用,实现了良好的焊接成形一致性控制,提高了在LNG薄膜舱中不锈钢板焊接的自适应能力。  相似文献   

14.
目的 准确预测激光熔覆Inconel 625熔覆层尺寸。方法 以送粉速率、扫描速度和激光功率为试验变量,以熔覆层的宽度和高度为评价指标,结合中心复合试验设计方法进行试验设计,开展单道激光熔覆试验,探究工艺参数对单道熔覆层尺寸的影响规律,并建立以工艺参数为输入、熔覆层尺寸为输出的BP神经网络模型,利用粒子群算法对BP神经网络模型进行优化,对比分析优化前后模型的预测效果。结果 激光功率对熔覆层宽度的影响最显著,其次是扫描速度,最后是送粉速率;扫描速度对熔覆层高度的影响最显著,其次是激光功率,最后是送粉速率;粒子群算法优化BP神经网络预测模型对熔覆层尺寸的预测精度较高,熔覆层宽度和高度的测量值和预测值之间的平均相对误差分别为4.238%和2.910%。结论 研究成果可以为激光熔覆Inconel 625熔覆层尺寸的调控和预测提供参考。  相似文献   

15.
窄间隙焊缝坡口间距小且焊道较深,摆动中心与焊缝中心偏差较大时,坡口两侧侧壁受热不良,易发生未熔合缺陷。为了及时了解窄间隙侧壁熔合情况,掌握侧壁内部焊接质量,本文提出了一种基于BP神经网络和D-S证据理论的多信息融合方法,预测侧壁熔合状态。对窄间隙焊接未熔合缺陷产生机制进行了分析,研究发现焊接电弧信号和熔池变化与侧壁成形质量存在密切关系,为此进行了一系列偏差实验,建立了电弧电信号和电弧熔池图像信号的实时采集系统,采用批量特征提取算法,提取了与侧壁熔合状态密切关联的峰值电流、峰值电压、电弧弧长、熔池长宽比、熔池面积和熔池周长等特征参量。采用BP算法训练神经网络,在此基础上通过D-S证据理论进行决策级融合。实验结果表明,该模型识别率可达96.667%,避免了神经网络识别时的误诊,获得了比单一传感信息更好的预测结果,提高了熔合状态识别的准确度和可靠度。  相似文献   

16.
As the base of the research work on the weld shape control during pulsed gas tungsten arc welding (GTAW) with wire filler, this paper addressed the modeling of the dynamic welding process. Topside length Lt, maximum width Wt and half-length ratio Rh1 were selected to depict topside weld pool shape, and were measured on-line by vision sensing. A dynamic neural network model was constructed to predict the usually unmeasured backside width and topside height of the weld through topside shape parameters and welding parameters. The inputs of the model were the welding parameters (peak current, pulse duty ratio, welding speed, filler rate), the joint gap, the topside pool shape parameters (Lt, Wt, and Rh1), and their history values at two former pulse, a total of 24 numbers. The validating experiment results proved that the artificial neural network (ANN) model had high precision and could be used in process control. At last, with the developed dynamic model, steady and dynamic behavior was analyzed by simulation experiments, which discovered the variation rules of weld pool shape parameters under different welding parameters, and further knew well the characteristic of the welding process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号