首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
目前国际上普遍采用堆芯熔融物压力容器内滞留(IVR)策略来缓解严重事故后果。本文基于日本应用能源研究所开发的核电厂事故分析程序SAMPSON,对其压力容器内熔融物冷却分析(DCA)模块进行改进,增加了熔池内金属和氧化物分层模型,开发了熔融物三维直角坐标网格与压力容器三维曲面坐标的交界面几何参数前处理程序,改进了压力容器外冷却的传热关系式。通过AP1000核电机组严重事故下的IVR对改进后的程序进行分析验证,并与实验结果进行对比。结果表明,改进后的SAMPSON程序可对核电厂严重事故下下封头内的熔融物冷却滞留开展有效的模拟分析。  相似文献   

2.
《核动力工程》2015,(6):56-60
基于堆芯熔融物与压力容器传热的机理分析模型,采用风险导向事故分析方法(ROAAM)分析压水堆在严重事故情况下通过冷却压力容器外部的手段来实施堆芯熔融物滞留在压力容器内(IVR)策略的有效性。以核电厂一级概率安全评价(PSA)分析结果为参考,计算ACP1000典型严重事故序列,分析影响熔融物传热的重要参数不确定性。概率分析结果表明:ACP1000发生假象的严重事故情况下,IVR策略有效性概率大于99%;由于熔融池顶部的金属层出现集热效应,下封头发生传热危险的主要位置出现在金属层。  相似文献   

3.
先进压水堆熔融物堆内滞留参数不确定分析研究   总被引:2,自引:2,他引:0  
压水堆核电厂在严重事故下将发生堆芯熔化事故而形成熔融池。形成熔融池的过程具有很大的不确定性,这影响到反应堆压力容器熔融物堆内滞留(IVR)策略的有效性。本工作以AP1000核电厂两层IVR模型为研究对象,对成功实施反应堆压力容器外部冷却(ERVC)的假想严重事故进行了熔融池参数不确定性分析,包括参数的敏感性分析和使用拉丁超立方抽样的概率分析。结果表明:衰变功率对IVR评价参数影响最大,应采取措施(如上堆腔注水)尽量延缓堆芯熔化的时间;熔融物中不锈钢的质量将对金属层参数造成较大影响,可考虑在压力容器内布置牺牲性材料来减小金属层的集热效应;氧化物层外压力容器失效的概率仅为1.2%,但金属层外压力容器失效的概率高达20%。本结果对今后IVR策略研究和设计具有一定的指导意义,同时也为压水堆核电厂安全评审提供理论支持。  相似文献   

4.
严重事故下堆芯熔融物再分布于压力容器下封头,在衰变热作用下高温堆芯熔融物对压力容器壁面施加较大的热负荷,可能导致压力容器失效。针对压力容器内熔融物滞留下的传热过程,基于Fortran90语言开发了椭球形下封头压力容器内熔融物堆内滞留(IVR)分析程序IVRASA-ELLIP,计算具有椭球形下封头的压力容器在严重事故下稳态熔池的传热过程及IVR特性。利用IVRASA-ELLIP程序计算了VVER-1000压力容器内熔池的传热,分析具有椭球形下封头的压力容器各处的壁面热流密度、氧化物硬壳厚度和压力容器壁厚,并与运用IVRASA程序计算的AP1000稳态熔池传热结果进行对比分析。研究结果表明,在相同初始参数下椭球形下封头内的壁面热流密度较球形下封头内的小,与热流密度的变化趋势相对应,椭球形下封头内压力容器壁的消融量较球形下封头内的小,椭球形下封头内形成的氧化物硬壳厚度较球形下封头内的厚。  相似文献   

5.
堆芯熔化严重事故下反应堆压力容器下封头高温蠕变分析   总被引:4,自引:2,他引:2  
核电厂在发生堆芯熔化严重事故时,采用堆内熔融物滞留(IVR)策略将熔融物包容在反应堆压力容器(RPV)内是一项重要缓解措施。在IVR策略期间,RPV下封头在熔融物的极高温度载荷和力学载荷的共同作用下很有可能因过度蠕变变形而失效。因此,有必要对熔融物滞留条件下RPV下封头进行蠕变变形分析,以保证RPV结构完整性。该文在假定IVR条件下,采用有限元方法对RPV下封头进行热-结构耦合分析,通过计算得到容器壁的温度场和应力场,以及下封头的塑性和蠕变变形,并结合塑性和蠕变断裂判据对下封头进行失效分析。结果表明,考虑蠕变影响后,结构的变形将大大增加;严重事故下采取熔融物滞留策略期间,RPV下封头的主要失效模式为蠕变失效而非塑性失效;内压对蠕变变形量和蠕变失效时间有较大影响。该文为严重事故下RPV下封头的蠕变和失效研究提供了分析方法。   相似文献   

6.
熔融物堆内滞留(IVR)是一项核电厂重要的严重事故管理措施,通过将熔融物滞留在压力容器内,以保证压力容器完整性,并防止某些可能危及安全壳完整性的堆外现象。对于高功率和熔池中金属量相对不足的反应堆,若下封头形成3层熔池结构,则其顶部薄金属层导致的聚焦效应可能对压力容器完整性带来更大的威胁。本文考虑通过破口倒灌及其他工程措施实现严重事故下熔池顶部水冷却,建立熔池传热模型,分析顶部注水的带热能力,建立事件树,分析顶部注水措施的成功概率及IVR的有效性。结果表明,通过压力容器内外同时水冷熔融物,能显著增强IVR措施的有效性。  相似文献   

7.
熔融物堆内滞留(In-vessel Retention,IVR)指的是在核电厂严重事故发生后,通过在压力容器和保温层间隙注入冷却水防止压力容器熔穿失效。本文基于COMSOL Multiphysics软件建立了一个流-热-固耦合计算模型,对IVR技术作用下的反应堆压力容器(Reactor Pressure Vessel,RPV)下封头双层熔融池的演变过程进行了仿真研究。当前模型计算结果表明:在稳态分层的状态下,与氧化物层接触的下封头未发生明显的熔化,与金属层接触的下封头会发生明显的熔化,但在被冷却条件下依然可以保持压力容器的完整性。  相似文献   

8.
参考某百万千瓦级核电厂设计,针对堆内熔融物滞留(IVR)策略投入后晚期(即压力容器下封头已形成熔融池的情况下)可能的一回路再注水场景开展分析,研究晚期再注水的一回路压力响应。通过与不实施再注水事故工况的对比分析,综合评估实施再注水时间、再注水流量及严重事故泄压阀开启数量对一回路的压力影响,得到了各措施的影响规律,并针对严重事故管理策略提出建议。   相似文献   

9.
在发生堆芯熔化的严重事故后,通过容器外冷却将熔融物滞留在容器内(IVR)是一种重要的核电站严重事故缓解措施。本文通过选取与IVR有效性评价相关的严重事故序列,用一体化严重事故计算程序进行堆芯熔化过程计算及下封头中熔池的形成过程分析,得出下封头中分层熔池的结构和成分及其对金属层热聚集效应的影响。通过有、无容器外冷却模型的对比计算,评价CPR1000堆型的IVR的有效性。结果表明:在下封头熔池的金属层所在的高度上存在明显的热集中效应;而容器外冷却能保证压力容器的完整性。  相似文献   

10.
反应堆发生严重事故后,将堆芯熔融物滞留在压力容器内的策略(In-vessel Retention,IVR)是作为缓解严重事故的一项重要措施,该策略已成功应用于AP1000、华龙一号和CAP1400等先进压水堆的严重事故管理中。在实施IVR策略时,下封头受到高温熔融物的热负荷会发生变形,下封头的变形改变堆腔的冷却流道,这会直接影响压力容器外部冷却的排热能力和IVR策略的成功实施,有必要对下封头变形展开研究和应用。针对ISAA(Integrated Severe Accident Analysis)程序LHTCM(Lower Head Thermal Creep Module)模型简化薄膜应力模型十分简单和缺乏计算变形模块的问题,本文从机理出发,基于Timoshenko板壳理论、Nortron蠕变定律和大变形塑性理论开发了机理模型—下封头大变形模型,并将该模型集成到一体化严重事故分析程序ISAA中对FOREVER-EC2实验进行应用,预测失效时间与实验的误差仅为1.9%,预测底部伸长量与实验测量值较为符合,破口位置与实验一致。分析结果表明该模型能准确预测在堆芯熔化严重事故中下封头所受应力、...  相似文献   

11.
海洋核动力平台严重事故下熔融物堆内滞留分析程序开发   总被引:1,自引:1,他引:0  
针对海洋核动力平台的设计特点,分析了严重事故下压力容器外冷却实现熔融物堆内滞留技术的可行性。根据海洋核动力平台功率密度较低和压力容器下封头尺寸较小的特点,建立了压力容器下封头内熔池传热理论模型,编制了分析程序SR-IVR,进行了基准例题验证。结果表明,本文所建分析模型和程序可用于海洋核动力平台严重事故下熔融物堆内滞留分析。  相似文献   

12.
In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by most operating nuclear power plants and advanced light water reactors (ALWRs), AP600, AP1000, etc. External reactor vessel cooling (ERVC) is a novel severe accident management for IVR analysis. In present study, IVR analysis code in severe accident (IVRASA) has been developed to evaluate the safety margin of IVR in AP1000 with anticipative depressurization and reactor cavity flooding in severe accident. For, IVRASA, the point estimate procedure has been developed for modeling the steady-state endpoint of two core melt configurations: Configuration I and Configuration II. The results of benchmark calculations of AP600 by IVRASA were consistent with those of the UCSB and INEEL. Then, IVRASA is used to calculate the heat transfer process caused by two core melt configurations of AP1000. The results of calculations of Configuration I indicate that the heat flux remains below the critical heat flux (CHF), however, the sensitivity calculations show that the heat flux in the metallic layer could exceed the CHF because of the focusing effect due to the thin metallic layer. On the other hand, the results of calculations of Configuration II suggest that the thermal failure of the lower head at the bottom location is highly unlikely, but the heat flux in light metallic layer could be higher than that of base case due to the portion of metal partitioning into the lower head. This work also investigated the effect of the uncertainties of the CHF correlations on the analysis of IVR.  相似文献   

13.
IMPACT is the name of a program and of specific simulation software, which will perform full-scope and detailed calculations of various phenomena in a nuclear power plant for a wide range of event scenarios. The four years of the IMPACT project Phase 1 have been completed, and each analysis module of the prototype version of the severe accident analysis code SAMPSON has been developed and verified by comparison with separate-effect test data. Verification of the integrated code with combinations of up to 11 analysis modules has been conducted, with the Analysis Control Module, to demonstrate the code capability and integrity. A 10-inch cold leg failure Loss of Coolant Accident in the Surry Plant was the assumed initiating event. The system analysis was divided into two cases; one was an in-vessel retention analysis when gap cooling was effective, the other was an analysis of phenomena when the event was extended to ex-vessel due to the reactor pressure vessel failure when gap cooling was not sufficient. Using the Analysis Control Module to select and execute adequate combinations of the various analysis modules dynamically according to the progression of plant phenomena and to control parallel processing, the goal of integrated calculations by SAMPSON with multiple analysis modules executing in parallel was achieved.  相似文献   

14.
If cooling is inadequate during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 accident. In such a case, concerns about containment failure and associated risks can be eliminated if it is possible to ensure that the lower head remains intact so that relocated core materials are retained within the vessel. Accordingly, in-vessel retention (IVR) of core melt as a key severe accident management strategy has been adopted by some operating nuclear power plants and planned for some advanced light water reactors. However, it is not clear that currently proposed external reactor vessel cooling (ERVC) without additional enhancements can provide sufficient heat removal to assure IVR for high power reactors (i.e., reactors with power levels up to 1500 MWe). Consequently, a joint United States/Korean International Nuclear Energy Research Initiative (I-NERI) has been launched to develop recommendations to improve the margin of success for in-vessel retention in high power reactors. This program is initially focussed on the Korean Advanced Power Reactor—1400 MWe (APR1400) design. However, recommendations will be developed that can be applied to a wide range of existing and advanced reactor designs. The recommendations will focus on modifications to enhance ERVC and modifications to enhance in-vessel debris coolability. In this paper, late-phase melt conditions affecting the potential for IVR of core melt in the APR1400 were established as a basis for developing the I-NERI recommendations. The selection of ‘bounding’ reactor accidents, simulation of those accidents using the SCDAP/RELAP5-3D© code, and resulting late-phase melt conditions are presented. Results from this effort indicate that bounding late-phase melt conditions could include large melt masses (>120,000 kg) relocating at high temperatures (3400 K). Estimated lower head heat fluxes associated with this melt could exceed the maximum critical heat flux, indicating additional measures such as the use of a core catcher and/or modifications to enhance external reactor vessel cooling may be necessary to ensure in-vessel retention of core melt.  相似文献   

15.
In-Vessel Retention (IVR) of core melt is a key severe accident management strategy adopted by operating nuclear power plants and advanced light water reactors (ALWRs), AP600, AP1000, etc. External Reactor Vessel Cooling (ERVC), which involves flooding the reactor cavity to submerge the reactor vessel in an attempt to cool core debris relocated to the vessel low head, is a novel severe accident management for IVR analysis. In present study, IVR analysis code in severe accident (IVRASA) has been proposed to evaluate the safety margin of IVR in AP600 with anticipative depressurization and reactor cavity flooding in severe accident. For, IVRASA, a simple novel analysis procedure has been developed for modeling the steady-state endpoint of core melt configurations. Furthermore, IVRASA was developed in a more general fashion so that it is applicable to compute various molten configurations such as UCSB Final Bounding State (FIBS). The results by IVRASA were consistent with those of the UCSB and INEEL. Benchmark calculations of UCSB-assumed FIBS indicate the applicability and accuracy of IVRASA and it could be applied to predict the thermal response of various molten configurations.  相似文献   

16.
严重事故缓解策略熔融物堆内滞留(IVR)有效性评价方法中,关于压力容器下封头内的熔池结构是最具争议的问题。本工作对目前国际上采用的稳定熔池2层和3层结构,以及在熔池形成过程中可能形成的4层结构进行了比较研究,建立了这3种结构下的熔池分层传热模型,并分析了3种结构在不同反应堆功率水平下对压力容器有效性的影响。结果表明,压力容器安全裕量随反应堆功率的升高而减小,在4层熔池结构下发生压力容器熔穿失效的可能性最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号