首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
A. Corrado  P. Fiorini  E. Sciubba 《Energy》2006,31(15):3186-3198
Aim of this paper is to analyze the performance of an innovative high-efficiency steam power plant by means of two “life cycle approach” methodologies, the life cycle assessment (LCA) and the “extended exergy analysis” (EEA).

The plant object of the analysis is a hydrogen-fed steam power plant in which the H2 is produced by a “zero CO2 emission” coal gasification process (the ZECOTECH© cycle). The CO2 capture system is a standard humid-CaO absorbing process and produces CaCO3 as a by-product, which is then regenerated to CaO releasing the CO2 for a downstream mineral sequestration process.

The steam power plant is based on an innovative combined-cycle process: the hydrogen is used as a fuel to produce high-temperature, medium-pressure steam that powers the steam turbine in the topping section, whose exhaust is used in a heat recovery boiler to feed a traditional steam power plant.

The environmental performance of the ZECOTECH© cycle is assessed by comparison with four different processes: power plant fed by H2 from natural gas steam reforming, two conventional coal- and natural gas power plants and a wind power plant.  相似文献   


2.
Application of landfill gas (LFG) means a synergy between environmental protection and energy production. This paper presents a review of the status of LFG application. To more efficiently utilize the LFG in Hong Kong, a trigeneration scheme is proposed as a new way of LFG utilization. The feasibility of LFG trigeneration in Hong Kong is evaluated from the views of primary energy-saving and greenhouse gas (GHG) emission reduction as well as economic benefit. The proposed scenario is compared with the conventional scenarios of LFG treatment and utilization. It is shown that LFG for trigeneration has a higher energy saving and GHG emission reduction potentials. The new scheme is also more economical than the conventional way of LFG utilization. Some policy recommendations are also given to promote the biomass energy utilization from waste landfills in Hong Kong.  相似文献   

3.
Utilization of nuclear energy is an effective way of solving the global warming resulting from CO2 emissions. Thermal energy accounts for more than two thirds of total energy utilization at present and therefore it is significant to extend the utilization of nuclear heat for the effective reduction of CO2 emissions in the world. This paper describes a coal gasification system using HTGR nuclear heat in an ammonia production plant in terms of industrial utilization of the nuclear heat. The system uses the nuclear heat directly in addition to generating electricity. A steam reforming method using a two-stage coal gasifier is employed: it improves the heat utilization efficiency of the secondary helium gas from the HTGR. Finally, the paper clarifies that the nuclear gasification system can reduce CO2 emissions by about five hundred thousand tons per year from that of a conventional system using fossil fuel.  相似文献   

4.
Both biobutanol and urea are the environment-friendly hydrogen carrier. This study is to compare hydrogen production between steam reforming of biobutanol and autothermal reforming of biobutanol feed using pure steam and vaporization of aqueous urea (VAU) by a thermodynamic analysis. Hydrogen-rich syngas production, carbon formation, thermal neutral temperature (TNT), and hydrogen production cost are analyzed in both steam reforming and autothermal reforming. The results show that hydrogen-rich syngas production with the use of VAU is higher than that with pure steam not only in steam reforming but also in autothermal reforming. When the VAU/butanol molar ratio is 8, and the O2/butanol molar ratio equals 3, the reforming efficiency reaches up to 81.42%. At the same condition, the hydrogen production cost is lower than that without blending urea. Therefore, using VAU to replace pure steam in biobutanol reforming leads to benefits of increasing the hydrogen-rich syngas yield and lowering cost.  相似文献   

5.
The “Hydrogen economy”, in which hydrogen will be a main carrier of energy from renewable sources, is a long term prospect. In the near and medium term increasing demand for hydrogen--also as an energy carrier in special niches--will probably be covered by hydrogen from fossil sources, mainly natural gas. This can be acceptable from an environment as well as an economical point of view, since hydrogen can be produced from natural gas at acceptable costs, without release of CO2 to the atmosphere. There are two main options for this: (1) hydrogen from natural gas by conventional technology (e.g. steam reforming) including CO2 sequestration; (2) high temperature pyrolysis of natural gas, yielding pure hydrogen and carbon black. Technologies for industrial scale realisation of these options have been developed and evaluated in Norway, which is a large producer and exporter of natural gas. The economy and market opportunities are discussed in the paper. It appears that renewable energy costs must come down considerably from present levels before hydrogen from renewables can compete with hydrogen from natural gas without release of CO2 to the atmosphere.  相似文献   

6.
M. Halmann  A. Frei  A. Steinfeld   《Energy》2007,32(12):2420-2427
The production of aluminum by the electrolytic Hall–Héroult process suffers from high energy requirements, the release of perfluorocarbons, and vast greenhouse gas emissions. The alternative carbothermic reduction of alumina, while significantly less energy-intensive, is complicated by the formation of aluminum carbide and oxycarbides. In the present work, the formation of Al, as well as Al2OC, Al4O4C, and Al4C3 was proven by experiments on mixtures of Al2O3 and activated carbon in an Ar atmosphere submitted to heat pulses by an induction furnace. Thermochemical equilibrium calculations indicate that the Al2O3-reduction using carbon as reducing agent is favored in the presence of limited amounts of oxygen. The temperature threshold for the onset of aluminum production is lowered, the formation of Al4C3 is decreased, and the yield of aluminum is improved. Significant further enhancement in the carbothermic reduction of Al2O3 is predicted by using CH4 as the reducing agent, again in the presence of limited amounts of oxygen. In this case, an important by-product is syngas, with a H2/CO molar ratio of about 2, suitable for methanol or Fischer–Tropsch syntheses. Under appropriate temperature and stoichiometry of reactants, the process can be designed to be thermo-neutral. Using alumina, methane, and oxygen as reagents, the co-production of aluminum with syngas, to be converted to methanol, predicts fuel savings of about 68% and CO2 emission avoidance of about 91%, vis-à-vis the conventional production of Al by electrolysis and of methanol by steam reforming of CH4. When using carbon (such as coke or petcoke) as reducing agent, fuel savings of 66% and CO2 emission avoidance of 15% are predicted. Preliminary evaluation for the proposed process indicates favorable economics, and the required high temperatures process heat is readily attainable using concentrated solar energy.  相似文献   

7.
用传统湿式浸渍法制备La2O3掺杂的商业γ-Al2O3负载的沼气重整催化剂Ni-Co/La2O3-γ-Al2O3,通过对NiCo双金属催化剂上沼气重整制氢在常压下的宏观动力学分析,得出该催化剂上CH4与CO2消耗、H2与CO生成时的表观反应速率方程.通过改变进料中CH4与CO2的分压,求出各物质的反应分级数,确定总反应...  相似文献   

8.
Performance modelling of a carbon dioxide removal system for power plants   总被引:5,自引:0,他引:5  
In this paper, a carbon dioxide removal and liquefaction system, which separates carbon dioxide from the flue gases of conventional power plants, was modelled. The system is based on an amine chemical absorption stripping system, followed by a liquefaction unit to treat the removed CO2 for transportation and storage. The effect of the main parameters on the absorption and stripping columns is presented. The main constraints set for the model are a capture efficiency of 90% and the use of an aqueous solution with a maximum 30% amine content by weight. The goal of this study is to remove the CO2 with minimum energy requirements for the process when it is integrated in a fossil fuel fired power plant. Results of the simulation are compared to experimental and literature data from feasibility studies and existing plants.

The power plant to which the removal system is connected is a 320 MW steam power plant with steam reheat and 8 feedwater heaters. Two different fossil fuels were considered: coal and natural gas. The effect of the modifications necessary to integrate the CO2 removal system in the power plant is also studied.

The capital cost of the removal and liquefaction system is estimated, and its influence on the cost of generated electricity is calculated.  相似文献   


9.
A natural gas (NG) fired power plant is designed with virtually zero emissions of pollutants, including CO2. The plant operates in a gas turbine-steam turbine combined cycle mode. NG is fired in highly enriched oxygen (99.7%) and recycled CO2 from the flue gas. Liquid oxygen (LOX) is supplied by an on-site air separation unit (ASU). By cross-integrating the ASU with the CO2 capture unit, the energy consumption for CO2 capture is significantly reduced. The exergy of LOX is used to liquefy CO2 from the flue gas, thereby saving compression energy and also delivering product CO2 in a saleable form. By applying a new technique, the gas turbine efficiency is increased by about 2.9%. The net thermal efficiency (electricity out/heat input) is estimated at 45%, compared to a plant without CO2 capture of 54%. However, the relatively modest efficiency loss is amply compensated by producing saleable byproducts, and by the virtue that the plant is pollution free, including NOx, SO2 and particulate matter. In fact, the plant needs no smokestack. Besides electricity, the byproducts of the plant are condensed CO2, NO2 and Ar, and if operated in cogeneration mode, steam.  相似文献   

10.
Biogas is a renewable biofuel that contains a lot of CH4 and CO2. Biogas can be used to produce heat and electric power while reducing CH4, one of greenhouse gas emissions. As a result, it has been getting increasing academic attention. There are some application ways of biogas; biogas can produce hydrogen to feed a fuel cell by reforming process. Urea is also a hydrogen carrier and could produce hydrogen by steam reforming. This study then employes steam reforming of biogas and compares hydrogen-rich syngas production and carbon dioxide with various methane concentrations using steam and aqueous urea solution (AUS) by Thermodynamic analysis. The results show that the utilization of AUS as a replacement for steam enriches the production of H2 and CO and has a slight CO2 rise compared with pure biogas steam reforming at a temperature higher than 800 °C. However, CO2 formation is less than the initial CO2 in biogas. At the reaction temperature of 700 °C, carbon formation does not occur in the reforming process for steam/biogas ratios higher than 2. These conditions led to the highest H2, CO production, and reforming efficiency (about 125%). The results can be used as operation data for systems that combine biogas reforming and applied to solid oxide fuel cell (SOFC), which usually operates between 700 °C to 900 °C to generate electric power in the future.  相似文献   

11.
建立干桦木屑在下吸式固定床气化炉中的Aspen Plus气化模型,该模型预测煤气组成和煤气热值,与文献试验结果吻合良好。利用灵敏度分析模块模拟了氧碳比、CO2/C对气化结果的影响,并提出O2/CO2分段气化流程,对比常规的CO2气化特征,分析了CO2/C对气化结果的影响。结果表明,纯氧气化时可获得高H2和CO浓度的气化气,但其净CO2排放量较高,氧碳比增加使碳转化率逐渐增加、冷煤气效率先增加后降低;CO2作为气化剂时,随着CO2/C的增加,净CO2排放量逐渐减少,但碳转化率及冷煤气效率大幅降低;与常规CO2气化相比,O2/CO2分段气化在保持低CO2排放量的同时,可有效增加气化过程中的碳转化率及冷煤气效率。  相似文献   

12.
本文提出以Fe2O3为载氧体、以CaO捕集CO2的生物质化学链气化系统,利用Aspen Plus软件对该系统进行了模拟,以合成气组成(干基)、合成气氢碳比、含碳产物的碳摩尔分布、冷气效率及收率等为系统性能评价指标,重点分析了燃料反应器温度(TFR)、载氧体Fe2O3与生物质碳摩尔比(Fe2O3/C)、水蒸气与生物质碳摩尔比(Steam/C)、CaO与生物质碳摩尔比(CaO/C)等系统参数对固体生物质化学链气化系统的影响。结果表明,在TFR = 825℃、Fe2O3/C = 0.5、Steam/C = 0.71和CaO/C = 0.26条件下,合成气制备系统性能较优,合成气中H2和CO2含量分别为55.2%和15.4%,氢碳比为1.93,冷气效率为78.2%,被CaCO3捕集的生物质碳为18.2%,收率(湿气基)为1.95 Nm3/kgbiomass,其中合成气中H2和CO收率为1.24 Nm3/kgbiomass。  相似文献   

13.
利用Aspen Plus 软件建立干桦木屑在下吸式固定床气化炉中的气化模型,模拟值与文献实验值吻合良好。利用Aspen Plus的灵敏度分析模块模拟分别以水蒸气(H2O)和二氧化碳(CO2)为气化剂时气化剂/生物质碳比(GC值)对气化结果的影响,并结合H2O、CO2各自的特点研究其复合气化。结果表明,H2O气化时可获得富氢煤气,但其净CO2排放量较高;CO2气化时碳转化率及冷煤气效率较低,但净CO2排放量较低;H2O、CO2复合气化使碳转化率及冷煤气效率略有降低,但可有效减少气化系统中的净CO2排放量。  相似文献   

14.
Integrated Gasification Combined Cycle (IGCC) is a power generation technology in which the solid feedstock is partially oxidized with oxygen and steam to produce syngas. In a conventional IGCC design without carbon capture, the syngas is purified for dust and hydrogen sulphide removal and then sent to a Combined Cycle Gas Turbine (CCGT) for power generation. Carbon capture technologies are expected to play an important role in the coming decades for reducing the greenhouse gas emissions. In a modified IGCC design for carbon capture, the syngas is catalytically shifted to maximize the hydrogen level and to concentrate the carbon species in the form of carbon dioxide which can be later captured in a pre-combustion arrangement. After carbon dioxide capture, the hydrogen-rich syngas can be either purified in a Pressure Swing Adsorption (PSA) unit and exported to the external customers (e.g., chemical industry, PEM fuel cells) or used in a CCGT for power generation.  相似文献   

15.
The influence of the activation temperature on textural characteristics of activated carbon prepared by partial gasification of a carbonized product (C-600) from rockrose wood (Cistus ladaniferus L.) was studied. Activations were effected in air, CO2, and steam. The temperature ranged between 450° and 750°C in air and between 750° and 950°C in CO2 or steam. Burnoff was 40%. Techniques used in the characterization study of the samples were gas adsorption (N2, 77K; CO2, 298K), mercury porosimetry, and density measurements. As temperature was increased, the microporosity increased for activations of C-600 in air, whereas the macroporosity decreased in CO2 and in steam. The development of mesoporosity was greater when activating in steam at the lowest temperature. The product of steam activation at 750°C had the best textural characteristics.  相似文献   

16.
A promising scheme for coal-fired power plants in which biomass co-firing and carbon dioxide capture technologies are adopted and the low-temperature waste heat from the CO2 capture process is recycled to heat the condensed water to achieve zero carbon emission is proposed in this paper. Based on a 660 MW supercritical coal-fired power plant, the thermal performance, emission performance, and economic performance of the proposed scheme are evaluated. In addition, a sensitivity analysis is conducted to show the effects of several key parameters on the performance of the proposed system. The results show that when the biomass mass mixing ratio is 15.40% and the CO2 capture rate is 90%, the CO2 emission of the coal-fired power plant can reach zero, indicating that the technical route proposed in this paper can indeed achieve zero carbon emission in coal-fired power plants. The net thermal efficiency decreases by 10.31%, due to the huge energy consumption of the CO2 capture unit. Besides, the cost of electricity (COE) and the cost of CO2 avoided (COA) of the proposed system are 80.37 $/MWh and 41.63 $/tCO2, respectively. The sensitivity analysis demonstrates that with the energy consumption of the reboiler decreasing from 3.22 GJ/tCO2 to 2.40 GJ/ tCO2, the efficiency penalty is reduced to 8.67%. This paper may provide reference for promoting the early realization of carbon neutrality in the power generation industry.  相似文献   

17.
Plasma catalytic reforming of methane   总被引:6,自引:0,他引:6  
Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This article describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius), and a high degree of dissociation and a substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (40% H2, 17% CO2 and 33% N2, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2–3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H2 with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content (1.5%) with power densities of 30 kW (H2 HHV)/l of reactor, or 10 m3/h H2 per liter of reactor. Power density should further increase with increased power and improved design.  相似文献   

18.
Capture of carbon dioxide from distributed sources is often neglected as a viable solution to the global problem of CO2 emissions management. Small scale power plants, including those applicable to the transportation sector, can be designed to capture their CO2 exhaust stream, provided it is not heavily diluted with air. Liquefaction of carbon dioxide allows the captured CO2 to be stored densely, with a minimal energetic penalty and space requirement, until it can be permanently sequestered. In this short-term solution, the energetic penalty for CO2 capture can be further offset by exploiting novel energy conversion processes involving regeneration of the reaction product stream – a simple strategy that is not exploited in conventional systems. More importantly, in the long-term, as the renewable energy infrastructure is built up, the collected CO2 can be recycled into synthetic carbon-based liquid fuels which act as energy carriers in the sustainable carbon economy.  相似文献   

19.
Operating conditions for low-temperature pyrolysis and steam reforming of plastics over a ruthenium catalyst were investigated. In the range studied, the highest gas and lowest coke fractions for polystyrene (PS) with a 60 g h−1 scale, continuous-feed, two-stage gasifier were obtained with a pyrolyzer temperature of 673 K, steam reforming temperature of 903 K, and weight hourly space velocity (WHSV) of 0.10 g-sample g-catalyst−1 h−1. These operating conditions are consistent with optimum conditions reported previously for polypropylene. Our results indicate that at around 903 K, the activity of the ruthenium catalyst was high enough to minimize the difference between the rates of the steam reforming reactions of the pyrolysates from polystyrene and polypropylene. The proposed system thus has the flexibility to compensate for differences in chemical structures of municipal waste plastics. In addition, the steam reforming temperature was about 200 K lower than the temperature used in a conventional Ni-catalyzed process for the production of hydrogen. Low-temperature steam reforming allows for lower thermal input to the steam reformer, which results in an increase in thermal efficiency in the proposed process employing a Ru catalyst. Because low-temperature steam reforming can be also expected to reduce thermal degradation rates of the catalyst, the pyrolysis-steam reforming process with a Ru catalyst has the potential for use in small-scale production of hydrogen-rich gas from waste plastics that can be used for power generation.  相似文献   

20.
Methanol, dimethyl ether and bioethanol steam reforming to hydrogen-rich gas were studied over CuO/CeO2 and CuO–CeO2/γ-Al2O3 catalysts. Both catalysts were found to provide complete conversion of methanol to hydrogen-rich gas at 300–350 °C. Complete conversion of dimethyl ether to hydrogen-rich gas occurred over CuO–CeO2/γ-Al2O3 at 350–370 °C. Complete conversion of ethanol to hydrogen-rich gas occurred over CuO/CeO2 at 350 °C. In both cases, the CO content in the obtained gas mixture was low (<2 vol.%). This hydrogen-rich gas can be used directly for fuelling high-temperature PEM FC. For fuelling low-temperature PEM FC, it is needed only to clean up the hydrogen-rich gas from CO to the level of 10 ppm. CuO/CeO2 catalyst can be used for this purpose as well. Since no individual WGS stage, that is necessary in most other hydrogen production processes, is involved here, the miniaturization of the multifuel processor for hydrogen production by methanol, ethanol or DME SR is quite feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号