首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
交流励磁变速恒频风力发电系统的运行与控制   总被引:6,自引:0,他引:6  
合理的励磁控制是确保变速恒频风力发电机可靠、高效运行的关键.分析了旋转坐标系下双馈型异步发电机(DFIG)的数学模型,采用定子磁链定向方式推导了DFIG矢量控制策略,并通过DFIG功率控制实现最大风能追踪.采用双PWM变换器作为DFIG的励磁电源,其中网侧变换器通过电网电压定向矢量控制实现交流侧功率因数和直流母线电压控制.在10kW机组上进行了包括发电机稳、动态变速恒频运行,最大风能追踪以及网侧变换器控制等内容的实验研究,实现了DFIG功率解耦、最大风能追踪以及相应的变换器工作状态的切换,验证了控制策略的正确性.  相似文献   

2.
本文主要研究了双馈感应电机(DFIG)的网侧和转子侧变换器的控制方法。双馈感应电机中转子侧变换器采用定子磁链定向矢量控制技术,实现了风能的最大跟踪以及有功功率和无功功率的解耦控制。网侧变换器采用电网电压定向矢量控制技术,控制了直流母线电压的恒定以及调节了网侧的功率因素。采用PSCAD/EMTDC电力系统仿真软件,构建了包括风速模型、风力机模型、变速恒频双馈电机、定子侧和转子侧变换器在内的双馈风力发电机仿真模型。仿真实验结果表明,所提方法是有效、合理的。  相似文献   

3.
通过对双馈感应发电机(DFIG)系统中的传统定子电压控制策略和网侧变换器控制策略的分析,给出了DFIG系统运行在电网电压小值跌落时改进的定子电压定向控制策略和网侧变换器控制策略,搭建了DFIG系统在不同控制方案下的Simulink仿真模型,系统仿真结果表明:提出的改进控制策略能有效地抑制电网电压跌落时DFIG系统的转子侧过电流和直流侧过电压,提高了系统在电网故障时的不间断运行能力.  相似文献   

4.
针对采用串联网侧变换器的双馈感应发电机(doubly fed induction generators, DFIG)风电系统,详细分析电网电压不平衡条件下该系统的运行情况,从抑制不平衡定子电压及维持系统有功功率平衡的角度出发,分别提出电网不平衡时串联网侧变换器和并联网侧变换器的控制策略.与电网不平衡下DFIG系统的传统运行控制方案相比,所提系统协调控制策略无需改变电网不平衡下转子侧变换器的控制策略,简化转子侧变换器的控制并有效提高其运行可靠性;所提方案在实现DFIG系统电磁转矩、直流链电压及系统总输出有功功率无二倍频波动的同时,实现电网不平衡下DFIG定、转子三相电流平衡,进一步提高了DFIG系统运行的稳定性和可靠性.通过对电网不平衡下采用串联网侧变换器的DFIG风电系统和采用传统控制策略的DFIG系统进行了仿真计算和对比分析,验证所提协调控制策略的正确性和有效性.  相似文献   

5.
双馈感应电机(DFIG)风力发电系统定子侧直接挂网运行,使故障穿越运行显得尤为重要。在研究多种故障电压补偿方案与九开关变换器脉宽调制策略的基础上,提出新颖的采用九开关变换器替代双馈风电系统网侧变换器实现并网控制与电压串补一体化方案。在对九开关变换器的数学模型、调制方法、工作状态、网侧九开关变换器的控制策略、直流侧电压分配以及全钒液流电池储能环节电路模型进行理论分析的基础上,建立网侧采用九开关变换器的DFIG风电系统仿真模型。设计多种并网点电网电压短路故障工况,分别对风电系统的电气参数和运行特性进行深入仿真研究。研究结果表明九开关变换器能维持DFIG机端电压稳定,使双馈风电机组在对称与不对称电网电压故障下实现柔性故障穿越运行。  相似文献   

6.
为了研究不平衡电网电压条件下双馈感应风力发电机(doubly-fedinduction generator,DFIG)系统增强运行能力的有效控制策略,提出了网侧、转子侧变换器的比例–谐振电流控制方案以及两者之间的协同控制策略。针对电网电压不平衡条件下DFIG转子侧变换器,提出了一种在两相定子静止αβ坐标系中实施的比例–谐振(proportional-resonant,P-R)电流控制方案,以实现对DFIG转子电流无需正、负相序分解的统一调节。采用正序d+轴电网电压定向简化了各种增强运行能力控制目标下的转子正、负序电流指令值算法,设计了相应的DFIG不平衡控制策略。实验研究表明,这种P-R电流控制方案能够实现转子侧变换器选定控制目标,具备优良的动态调节性能,可增强不平衡电网电压故障下DFIG风力发电机系统的不间断运行能力。  相似文献   

7.
为了提升双馈感应发电机(DFIG)网侧变换器的动态性能,提出了一种二阶滑模非线性控制方案,可有效地提升DFIG的直流侧电压与网侧电流的动态响应。传统的DFIG的网侧变换器的通常采用直流电压外环网侧电流内环的双闭环控制方案,直流电压外环和网侧电流内环均采用比例积分控制方案。而在实际工况中,直流侧电容器电容可能会随环境改变而改变,并且DFIG系统的输出功率也和风速息息相关。因此,为了提升网侧变换器的鲁棒性,本研究针对DFIG的网侧变换器的直流电压外环,设计了一种二阶滑模非线性控制方案来替代传统的PI控制。最后,Matlab/Simulink仿真结果验证了所提的二阶滑模非线性控制的鲁棒性。  相似文献   

8.
根据双馈感应电机(DFIG)的数学模型,详细论述了双馈风力发电系统功率控制原理,分析了转子侧PWM变换器对定子输出功率的控制作用。转子侧PWM变换器采用按定子电压定向矢量控制策略,在实现定子输出有功、无功功率解耦控制的同时也能平滑地调节定子侧功率因数。MATLAB软件的仿真结果和所搭建双馈风力发电系统试验平台的试验结果均验证了控制方案的正确性和可行性。  相似文献   

9.
在研究双馈风力发电系统高电压穿越的节能控制问题的过程中,考虑到外部风力环境变化较大,需保持变换器的稳定性节能控制。传统节能控制方法不仅动态及稳态性能差,而且节能控制策略相对复杂。为了提高节能控制效果,提出采用串联网侧变换器的双馈风电系统高电压穿越的节能控制策略,向串联网侧变换器的控制向电机定子侧和电网间添加合理的控制电压,按照电网电压定向的同步旋转,给出d-q轴系下SGSC的电压控制方程,保持DFIG定子端电压不变,过滤DFIG定子磁链中的暂态直流分量。当双馈风电系统电压及电流均不超限时,对转子侧变换器和并联网侧变换器的输出电压矢量进行节能控制,使双馈风电系统为电网提供最大程度的无功支持,快速恢复电网电压。仿真实验结果表明,所提策略具有很高的节能控制性能。  相似文献   

10.
为进一步提高电网电压不平衡下采用串联网侧变换器的双馈感应发电机(doubly fed induction generator,DFIG)风电系统的运行性能,研究了适用于该系统的改进运行控制策略。提出电网电压不平衡下采用串联网侧变换器的DFIG系统的3种可选运行方案,以此为基础提出串联网侧变换器与并联网侧变换器的协调控制策略,并建立了在双同步dq旋转坐标轴系下两者的控制模型。所提系统协调控制方案无需改变电网电压不平衡下转子侧变换器的控制策略,在实现发电机输出功率无二倍频波动、电磁转矩无二倍频波动以及定、转子三相电流平衡的同时,可实现电网电压不平衡下整个系统或总输出有功功率无二倍频波动(同时可实现直流链电压无二倍频波动)或总输出无功功率无二倍频波动或整个系统无负序电流注入电网的不同运行功能,进一步增强了不平衡电压下DFIG风电系统的运行能力。对一台采用串联网侧变换器的DFIG风电模拟系统在不平衡电压条件下的运行进行了相关实验,实验结果验证了该文所提改进控制策略的可行性。  相似文献   

11.
双馈风力发电机低电压过渡的相角补偿控制策略   总被引:2,自引:0,他引:2  
基于撬棒保护(crowbar)的控制方法是双馈风电机组(doubly-fed induction generator,DFIG)实现低电压过渡(low voltage ride through,LVRT)的主要方式之一。在撬棒保护退出后,故障恢复过渡过程中,转子过电流仍有可能损坏变流器。针对上述问题,通过双馈电机的动态等效模型构建故障过程系统分析模型,深入分析故障发生和电网电压恢复过程中的机端电压相角跳变机制及其对矢量定向精度的影响。在此基础上,提出相角补偿控制原理,改进现有 LVRT控制策略,将控制流程分为正常运行、撬棒保护投入、撬棒保护退出和电网电压恢复4个阶段。在正常运行及撬棒保护退出阶段,采用定子磁链定向控制;在撬棒保护投入阶段,封闭转子侧变流器绝缘栅双极型功率管(insulated gate bipolar transistor,IGBT)的脉冲,网侧变流器保持正常工作;在电网电压恢复阶段采用相角补偿控制。仿真结果表明,所提控制策略能够有效抑制电网电压恢复过程中的过电流。  相似文献   

12.
为精简双馈感应发电机直流并网系统结构,在采用双变流器直流并网的基础上,进一步研究双馈电机无位置传感器控制策略。针对定子电压的非正弦性,定子侧变流器和转子侧变流器通过间接气隙磁链定向控制。为降低无位置传感器运行的参数依赖性,采用基于气隙磁链的模型参考自适应控制策略。以双馈电机数学模型为基础,采用小信号的分析方法,分析了无位置传感器策略的稳定性和对双馈电机参数变化的鲁棒性。最后构建了双馈风力发电机直流并网系统实验平台,对所提控制策略的正确性与可行性进行了实验验证。  相似文献   

13.
针对弱电网下双馈风电并网系统的稳定性问题,文中提出了一种基于电网电压扰动补偿的双馈风电机组补偿控制策略。首先,在同步旋转坐标系下建立双馈风电机组,包括转子侧变换器和网侧变换器的统一阻抗模型。然后,基于所建立的阻抗模型分析了并网点电压扰动到控制器输出的传递关系,分别在转子侧电流环和网侧电流环引入了电压扰动补偿对变换器进行改进控制,并通过广义奈奎斯特判据证明了该方法能有效提高双馈风电机组在弱电网下的并网稳定性。理论分析表明,基于并网点电压扰动补偿的转子侧和网侧补偿控制能很好地改善双馈风电机组的输出阻抗特性,从而提高其在弱电网下的稳定性。最后,通过仿真分析验证了该补偿控制方法的有效性。  相似文献   

14.
为增强电网故障下双馈风力发电系统(DFIG)的低电压穿越(LVRT)运行能力,提出一种DFIG转子侧变换器(RSC)强励控制策略。在基于定子磁链定向的矢量控制策略中增加多频比例谐振控制器(MFPR),当电网故障造成发电机定子电压跌落时,多频比例谐振控制器能够对转子侧变换器(RSC)的输出励磁电压进行补偿,抑制转子故障电流,实现DFIG的低电压穿越运行。分析了转子电压等级与DFIG的低电压穿越运行区间的关系,为DFIG转子侧变换器的电压等级设计标准提供了参考依据。控制系统结构简单,保证了系统的响应速度,可同时对电网对称跌落和不对称跌落产生的故障电流进行抑制。通过对1.5 MW双馈风力发电机组进行仿真研究,验证了理论分析的正确性和所提控制策略的可行性。  相似文献   

15.
为避免电网电压不对称跌落导致双馈风电机组(DFIG)脱网运行,分析了电网不对称故障时双馈风力发电机组直流母线电压波动机理,直流侧过电压这一现象主要由定子侧直流分量和电网电压负序分量引起.通过参考系坐标变换导出在正负序坐标系中双馈感应发电机的电压和电流方程,建立了正、负序坐标系下DFIG数学模型,利用机、网变流器协调控制方法,在不对称电网故障期间,机侧变流器转子电流的负序分量控制为零,网侧变流器采用双闭环正、负序电流控制抑制网侧负序分量,结合功率计算模块,有效抑制了机组电磁转矩与电流的2倍频波动,以及直流母线电压与电流负序分量的波动,改善了DFIG在不对称电网故障下的动态性能.仿真结果表明了该控制策略的可行性.  相似文献   

16.
结合双馈感应发电机(DFIG)的数学模型,分别根据网侧变换器和转子侧变换器的控制目标对其单独进行SVPWM双闭环控制。提出控制系统中二阶PI调节器的参数优化设计方法,从而加快控制系统的响应速度,实现最大风能追踪,使DFIG能够在次同步、同步和超同步状态下进行快速、平稳过渡。最后根据优化设计后的参数对整个系统进行仿真研究,证明了该控制系统的快速性和可靠性。  相似文献   

17.
当双馈风力发电机组受到外界扰动时,网侧变换器控制器的电感和支撑电容直接关系到系统的稳定性和快速响应能力。以双馈异步发电机的网侧变换器为研究对象,对基于电网电压矢量定向的双闭环控制策略进行了研究。首先对网侧变换器进行了数学建模,在基于电网电压矢量控制策略前提下给出了电容、电感参数大致选取范围,并通过在Simulink环境下搭建仿真模型,研究了电容、电感参数对系统响应的快速性、准确性、稳定性的影响规律。  相似文献   

18.
基于电网虚拟磁链的变速恒频风力发电机柔性并网技术   总被引:1,自引:1,他引:0  
利用双馈风力发电机与电网的"柔性连接"特性,基于合理的转子侧交流励磁控制可实现发电机柔性并网.在推导双馈风力发电机空载数学模型基础上,提出了电网虚拟磁链的概念,给出了柔性并网中双PWM励磁变换器的控制方法:基于电网虚拟磁链定向的机侧变换器矢量控制策略和基于电网电压定向网侧变换器矢量控制策略.设计了具有初始磁链估计、不需电压传感器的虚拟电网磁链观测器,该观测器实现简单,精度较高.实验研究表明,柔性并网技术安全稳定,电流冲击小,满足双馈风力发电机的变速恒频运行需要.  相似文献   

19.
提出一种基于预测控制的DFIG功率调节控制方案,增强DFIG调节电网电能质量的能力,提高DFIG系统的无功输出能力。首先比较了DFIG系统和统一电能质量调节器的控制方法。针对DFIG功率分配动态多变量的过程,设计三输入三输出的广义预测控制方案,通过模型预测、滚动优化和反馈校正,提高了DFIG的无功补偿能力。仿真对比了多种情况下最大功率点跟踪控制和广义预测控制下的DFIG的无功输出,证明了使用广义预测控制可以有效的提高DFIG的无功补偿总量,增强DFIG系统调节电网电能质量的能力。  相似文献   

20.
在电网电压发生跌落故障期间,基于Crowbar电路的双馈风力发电系统需要吸收大量无功功率。通过分析故障下DFIG系统的运行特点,建立了变桨距角控制模型及网侧变流器的STATCOM控制模型,Crowbar电路动作后,利用变桨距系统调节桨距角来抑制系统转差率,减小系统从电网中吸收无功功率,同时将网侧变换器切换成STATCOM工作模式,为系统提供无功功率补偿,在PSCAD/EMTDC平台进行暂态仿真研究。结果表明,在故障期间Crowbar电路启动后,通过该控制策略能避免系统从电网中吸收过量无功功率,有助于主电网电压的重建和恢复,验证了所提方法的有效性和正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号