首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
针对复杂场景下,PCB缺陷检测难度大、种类多、容易出现误检或漏检的问题,提出一种基于YOLOX-WSC的PCB缺陷检测算法。对输入模型数据进行优化,采用弱化数据增强减少Mosaic引入的不准确图像并提前完成收敛,提升了模型检测效果;在主干网络中添加无参数注意力SimAM,在不增加模型参数的同时使用能量函数评估有效特征,以提升算法的特征提取和定位能力;在特征融合网络中采用CSPHB模块替换CSPLayer结构,获取高阶语义信息,提高分辨能力,同时加强特征融合网络的特征融合交互能力,进而提高模型检测性能。实验结果表明,各模块的改进平均精度均值(mAP)都有不同程度的提升,YOLOX-WSC算法的mAP@0.5达到96.65%,mAP@0.5:0.95达到了79.58%,比YOLOX分别提升了2.88个百分点、11.64个百分点,并且各个类别缺陷平均精度有明显提升,证明了算法的有效性。  相似文献   

2.
针对现有深度模型在工业轴承外观缺陷检测领域, 存在模型参数量大、特征融合不充分以及对小目标检测精度低等问题, 提出了一种轻量化自适应特征融合检测网络(Efficient-YOLO). 首先, 该网络采用嵌入CBAM注意力机制的EfficientNetV2结构进行基本特征提取, 便于确保模型精度同时显著优化模型参数量; 其次, 设计了一种自适应特征融合网络(CBAM-BiFPN), 用来增加网络对有效特征信息的提取; 接着, 在下游特征融合网络引入Swin?Transformer机制, 同时配合上游网络引入的Ghost卷积, 大幅度提高模型对轴承外观缺陷的全局感知能力; 最后, 在推理阶段运用改进的非极大值抑制方法(Soft-CIoU-NMS), 加入距离有关的权重评价因素, 减少了重叠框的漏检. 实验结果表明: 与现有主流检测模型相比, 此方法在轴承表面缺陷数据集上, mAP达到了90.1%, 参数量降低至1.99M, 计算量为7 GFLOPs, 对轴承缺陷小目标识别率显著提升, 满足工业现场轴承外观缺陷检测需求.  相似文献   

3.
针对传统目标检测方法在对电子元器件进行缺陷检测时存在参数量大、检测效率低的问题,提出了一种基于轻量化YOLOX检测网络的目标检测方法。首先,使用深度可分离卷积对主干网络实现轻量化处理,减少参数量的同时提高检测速度;其次,构建基于空间金字塔的通道注意力模型,对不同尺度特征进行筛选融合,加强小尺寸缺陷的特征权重;在特征融合的采样过程中,加入高效通道注意力,在略微增加参数量的情况下,提升检测精度;最后,采用EIoU损失函数优化IoU损失函数,并使用余弦退火算法来使模型达到最佳检测效果。采用自制的电子元器件外观缺陷数据集进行实验,所提方法的平均检测精度达到98.96%,每幅图像的检测时间大约为0.09 s,与原YOLOX网络相比检测速度提高了一倍,模型大小缩小了约60%,并且在PCB瑕疵公共数据集上进行了验证,结果表明所提方法实现了目标缺陷的快速检测。  相似文献   

4.
复杂纹理瓷砖表面存在较多的低可视度小目标缺陷与严重的复杂纹理背景干扰,使应用目标检测方法时易出现较高的误检率和漏检率。为提升复杂纹理瓷砖表面缺陷检测效率,提出了基于通道与空间联合注意力的复杂纹理瓷砖表面缺陷检测方案。首先通过建模深浅层特征通道间关系设计了一种选择性特征融合方法,以提升模型对小目标缺陷的特征表达;其次,提出了通道与空间联合注意力模块,通过通道注意力和空间注意力来筛选关键特征通道和抑制纹理区域,使模型着重于学习缺陷特征以增强模型辨别缺陷与纹理的能力;最后,在复杂纹理瓷砖表面缺陷数据上进行了实验验证。实验结果表明,相较于AFF(attentional feature fusion)和CBAM(convolutional block attention module)方法,选择性特征融合方法和通道与空间联合注意力模块使模型检测性能分别提高了5.3 AP、6.32 AP。最终,实验证明了该方案分别优于现有的瓷砖检测方法YOLOv5和纹理织物缺陷检测AFAM方法1.32 AP、2.12 AP。  相似文献   

5.
本文介绍了一种新的基于YOLOv5s的目标检测方法,旨在弥补当前主流检测方法在小目标安全帽佩戴检测方面的不足,提高检测精度和避免漏检.首先增加了一个小目标检测层,增加对小目标安全帽的检测精度;其次引入ShuffleAttention注意力机制,本文将ShuffleAttention的分组数由原来的64组减少为16组,更加有利于模型对深浅、大小特征的全局提取;最后增加SA-BiFPN网络结构,进行双向的多尺度特征融合,提取更加有效的特征信息.实验表明,和原YOLOv5s算法相比,改善后的算法平均精确率提升了1.7%,达到了92.5%,其中佩戴安全帽和未佩戴安全帽的平均精度分别提升了1.9%和1.4%.本文与其他目标检测算法进行对比测试,实验结果表明SAB-YOLOv5s算法模型仅比原始YOLOv5s算法模型增大了1.5M,小于其他算法模型,提高了目标检测的平均精度,减少了小目标检测中漏检、误检的情况,实现了准确且轻量级的安全帽佩戴检测.  相似文献   

6.
优质木材深受人们喜爱,但木材存在多种缺陷导致优质木材产量少,木材利用率低。运用深度学习的目标检测算法可以实现木材表面缺陷的快速稳定检测,以此提高木材的优质化和利用率。针对目前木材表面缺陷目标小、密集和复杂等特点导致检测精度较差的问题,提出了一种基于改进YOLOv7的木材表面缺陷检测模型YOLOv7-ESS。针对木材的裂缝缺陷存在极端长宽比例而影响检测效果的问题,嵌入注意力模块ECBAM,通过加强对极端长宽比例缺陷的注意力,提高模型的特征提取能力。针对在提取特征时木材表面小缺陷特征信息丢失严重的问题,引入浅层加权特征融合网络SFPN,以深层特征图作为输出,同时有效利用浅层特征信息,提高小缺陷的识别准确率。引入SIoU损失函数,提升模型收敛速度及模型精度。结果表明,YOLOv7-ESS模型平均检测精度为94.7%,较YOLOv7检测精度提高了11.2个百分点,满足木材生产加工时的缺陷检测要求。  相似文献   

7.
两段式缺陷检测模型中分割和分类网络的优化目标不一致,导致二者耦合性较差,且分割模块误差的积累可能进一步弱化分类模块的性能.针对上述问题,提出一种基于注意力机制的缺陷检测联合优化算法.首先基于混合注意力特征融合模块的分割网络融合浅层特征和深层特征,提取更全面的缺陷位置信息;然后基于多感受野空间注意力模块的分类网络挖掘更具判别性的缺陷类别特征;最后通过联合优化目标实现分割和分类网络的学习优化,提升整个算法的耦合性以及性能.基于PyTorch框架,在公开工业缺陷检测数据集DAGM 2007, MAGNETIC-TILE和KolektorSDD2数据集上进行实验,并引入分段式算法及类U-Net算法进行横向对比的结果表明,所提算法的准确率相比分段式算法最高提升28.02%,相比类U-Net算法最高提升8.3%,且精确率、召回率、F1值均优于同类算法,具有更好的检测性能.  相似文献   

8.
为了进一步提高多尺度目标检测的速度和精度,解决小目标检测易造成的漏检、错检以及重复检测等问题,提出一种基于改进YOLOv3的目标检测算法实现多尺度目标的自动检测。首先,在特征提取网络中对网络结构进行改进,在残差模块的空间维度中引入注意力机制,对小目标进行关注;然后,利用密集连接网络(DenseNet)充分融合网络浅层信息,并用深度可分离卷积替换主干网络中的普通卷积,减少模型的参数量,提升检测速率。在特征融合网络中,通过双向金字塔结构实现深浅层特征的双向融合,并将3尺度预测变为4尺度预测,提高了多尺度特征的学习能力;在损失函数方面,选取GIoU(Generalized Intersection over Union)作为损失函数,提高目标识别的精度,降低目标漏检率。实验结果表明,基于改进YOLOv3(You Only Look Once v3)的目标检测算法在Pascal VOC测试集上的平均准确率均值(mAP)达到83.26%,与原YOLOv3算法相比提升了5.89个百分点,检测速度达22.0 frame/s;在COCO数据集上,与原YOLOv3算法相比,基于改进YOLOv3的目标检测算法在mAP上提升了3.28个百分点;同时,在进行多尺度的目标检测中,算法的mAP有所提升,验证了基于改进YOLOv3的目标检测算法的有效性。  相似文献   

9.
小目标检测用来识别图像中小像素尺寸目标。传统目标识别算法泛化性差,而通用的深度卷积神经网络算法容易丢失小目标的特征,对小目标识别的效果不甚理想。针对以上问题,提出了一种基于注意力机制的小目标检测深度学习模型AM-R-CNN,该模型在ResNet101主干网络和候选区域生成网络中使用了通道域注意力和空间域注意力,通道域注意力模块实现了通道维度上的特征加权标定,空间域注意力模块实现了空间维度上的特征聚焦,从而提升了小目标的捕获效果。此外,模型使用数据增强技术和多尺度特征融合技术,保证了小目标特征提取的有效性。在遥感影像数据集上的识别船只实验表明,注意力模块可带来小目标检测的性能提升。  相似文献   

10.
为了解决小目标检测在实际应用中的高漏检率、低准确率、低召回率等问题,提出一种基于感受野扩增特征融合的小目标检测算法.首先,对全卷积单阶段目标检测算法(fully convolutional one-stage object detection, FCOS)基础网络特征提取部分增加感受野扩增模块,改善基础网络ResNet-50特征信息提取较少、浅层特征层信息利用率偏低等问题;其次,在特征金字塔部分利用门控思想筛选信息融合,降低无效信息融合的干扰;最后,对7个特征层增加注意力机制模块,提升目标定位精度和分类精度.在COCO2017数据集上的实验结果表明,该算法比传统FCOS算法的检测精度提升2.4%.其中,小目标检测精度提升3.2%,具有更好的检测效果.  相似文献   

11.
随着卷积神经网络与特征金字塔的发展,目标检测在大、中目标上取得了突破,但对于小目标存在漏检、检测精度低等问题。在YOLOv4算法的基础上进行改进,提出YOLOv4-RF算法,进一步提高模型对小目标的检测性能。使用空洞卷积替换YOLOv4中Neck部分的池化金字塔,在网络更深处减少语义丢失的同时获得更大的感受野。在此基础上,对主干网络进行轻量化并增加特征金字塔到主干网络的反馈机制,对来自浅层与深层融合的特征再次处理,保留更多小目标的特征信息,提高网络分类和定位的有效性。鉴于小目标物体属于困难检测样本,引入Focal Loss损失函数,增大困难样本的损失权重,形成YOLOv4-RF算法。在KITTI数据集上的实验数据表明,YOLOv4-RF在各个类别上的检测精度均高于YOLOv4,并在模型缩小138 MB的基础上提高了1.4%的平均精度均值(MAP@0.5)。  相似文献   

12.
针对复杂道路背景下的密集遮挡目标和小目标导致的误检、漏检问题,提出一种基于改进YOLOv5的复杂道路目标检测算法。引入Quality Focal Loss,将分类得分与位置的质量预测结合,提高了对密集遮挡目标的定位精度;增加一层浅层检测层作为更小目标的检测层,将原始算法的三尺度检测改为四尺度,特征融合部分也作相应改进,提高了算法对小目标特征的学习能力;借鉴加权双向特征金字塔网络(BiFPN)的特征融合思想,提出了去权重的BiFPN,充分利用深层、浅层以及原始的特征信息,加强了特征融合,减少了卷积过程中特征信息的丢失,提高了检测精度;引入卷积块注意模块(CBAM),进一步提升了算法的特征提取能力,让算法更关注有用的信息。实验结果表明,该改进算法在公开的自动驾驶数据集KITTI和自制的骑乘人员头盔数据集Helmet上的检测精度分别达到了94.9%和96.8%,相比原始算法分别提高了1.9个百分点和2.1个百分点的检测精度,检测速度分别达到了69 FPS和68 FPS,具有较好的检测精度与实时性,同时与一些主流的目标检测算法相比,该改进算法也有一定的优越性。  相似文献   

13.
针对机场跑道异物(foreign object debris,FOD)在图像中目标占比小,特征不明显,经常导致误检、漏检的问题,提出一种改进YOLOv5的FOD目标检测算法。改进多尺度融合与检测部分,融合高分辨率特征图增强小目标特征表达,移除大目标检测层以减少网络推理计算量;引入轻量高效的卷积注意力模块(CBAM),从空间与通道两个维度提升模型关注目标特征的能力;在特征融合阶段采用RepVGG模块,提高模型特征融合能力的同时提高了检测精度;采用SIoU Loss作为损失函数,提升了边框回归的速度与精度。在自制FOD数据集上进行对比实验,结果表明:该方法在满足实时性的条件下,实现了95.01%的mAP50、55.79%的mAP50:95,比原算法YOLOv5分别提高了2.78、3.28个百分点,有效解决了传统FOD检测误检、漏检问题,同时与主流目标检测算法相比,提出的改进算法更适用于FOD检测任务。  相似文献   

14.
为了满足锂离子电池电极缺陷检测精度与实时性的需求,解决电极图像背景噪声复杂、缺陷微小且对比度低等问题,提出一种基于注意力机制与多尺度特征融合的电极缺陷YOLO检测算法.在YOLOv4的基础上,首先,将SE(squeeze-and-excitation)注意力模块嵌入特征提取主干网络中,区分feature map中不同通道的重要性,强化目标区域的关键特征,提高网络的检测精度;其次,加入融合空洞卷积的池化金字塔(ASPP)结构,增大网络感受野的同时最大程度地保留多尺度特征信息,提高算法对小目标的检测性能;然后,设计一种多尺度稠密特征金字塔,在三尺度特征图的基础上增加一个浅层特征,采用稠密连接的方式融合特征,提升浅层细节特征与高级语义信息的融合能力,增强对微小缺陷特征的提取;最后,采用$ K $-means++算法聚类先验框,引入focal loss损失函数增大小目标样本的损失权重,有效提高网络学习的收敛速度.实验结果表明,所提算法较原YOLOv4模型的mAP值提升6.42%,较其他常用算法综合性能上有着较大的优势,可较好地满足实际工业生产的实时监测需求.  相似文献   

15.
药品泡罩包装中铝箔表面包含各种字体和图案信息,而且铝箔表面凹凸不平,拍摄中会出现明 暗分布不均的情况,可导致缺陷特征和铝箔表面特征相似度较高。针对 YOLOX 模型无法更加准确区分缺陷特 征和铝箔表面特征的问题,提出一种改进 YOLOX 模型的表面缺陷检测方法。首先,为了使输入到 Prediction 网络的信息更具全局性,需要对 Neck 网络中特征图的全局特征进行分析,于是将 Neck 网络的 CSP 模块替换 成 transformer encoder 模块。同时 YOLOX 模型具有较深的深度,为了有效地提高分类精度,使用 Mish 激活函 数替换 Swish 激活函数。然后针对缺陷特征和铝箔表面特征相似导致缺陷区域和背景区域分类困难的问题,在 损失函数中引入 focal loss。实验结果表明,改进的模型对铝箔表面缺陷检测的 mAP 为 90.17%,比原始的 YOLOX 模型提高了 4.95%,并且改进的模型能够降低和铝箔表面特征相似度较高的缺陷误检和漏检的概率。  相似文献   

16.
王红梅  王晓鸽  王晓燕 《控制与决策》2022,37(12):3115-3121
目标检测是计算机视觉领域的重要研究方向.传统的目标检测方法在特征设计上花费了大量时间,且手工设计的特征对于目标多样性的问题并没有好的鲁棒性,深度学习技术逐渐成为近年来计算机视觉领域的突破口.为此,对现有的基础神经网络进行研究,采用经典卷积神经网络VGGNet作为基础网络,添加部分深层网络,结合SSD(single shot multibox detector)算法构建网络框架.针对模型训练中出现的正负样本不均衡问题,根据困难样本挖掘原理,在原有的损失函数中引入调制因子,将背景部分视为简单样本,减小背景损失在置信损失中的占比,使得模型收敛更快速,模型训练更充分,从而提高复杂背景下的目标检测精度.同时,通过构建特征金字塔和融合多层特征图的方式,实现对低层特征图的语义信息融合增强,以提高对小目标检测的精度,从而提高整体的检测精度.仿真实验结果表明,所提出的目标检测算法(feature fusion based SSD,FF-SSD)在复杂背景下对各种目标均可取得较高的检测精度.  相似文献   

17.
目标检测算法因数据存在分辨率较低、噪声等干扰,不能有效利用特征图中目标的边缘纹理和语义信息,导致小目标检测效果较差。为此,本文提出一种基于SSD的小目标检测改进算法。首先,采用普通卷积和深度可分离卷积进行同步特征学习并融合,获得信息丰富的浅层特征。然后,在固有的5个尺度的特征层后添加通道和空间自适应权重分配网络,使得模型更关注通道和空间的重要特征信息。最后,将候选目标框进行非极大抑制筛选得到检测结果。通过将改进的方法与Faster RCNN、SSD等方法在VOC2007数据集上测试结果进行比较,该方法降低了小目标的误检率,提升了整体目标的精度,所提模型mAP达到了78.94%,比SSD网络提高了3.13%。  相似文献   

18.
小目标检测广泛应用于视频监控等各种任务,在各领域均有着重要作用.由于待测目标尺寸小、特征弱等原因,目前的检测算法对小目标的检测性能仍值得进一步提升.现有基于设计特征的传统方法在复杂背景的应用场景下检测精度低、鲁棒性弱,基于深度学习的检测算法存在数据集难获取、小目标特征难提取等问题.面向解决低信杂比图像中小目标因面积占比小导致的特征提取难的问题,提出了一个深度分割模型用于小目标检测.为进一步提升检测性能、降低漏检率,充分应用多波段图像信息,设计了一个基于深度分割模型的多波段融合小目标检测方法.在仿真数据集上的实验结果表明,该方法有效提高了小目标检测的准确率,为小目标检测的后续研究提供了新的思路.  相似文献   

19.
针对交通场景中由光照、遮挡、目标小以及背景复杂等因素导致目标检测精度低,易出现漏检和误检问题的情况,提出了一种基于YOLOv7的交通目标检测算法;该算法在主干网络中融入多头注意力机制,以增强网络特征学习能力,从而更好地捕获数据和特征内部的相关性;在YOLOv7颈部网络引入协调注意力模块(CA),将位置信息嵌入到注意力机制中,忽略无关信息的干扰,以增强网络的特征提取能力;增加一个多尺度检测网络,以增强模型对不同尺度目标的检测能力;将CIoU损失函数更改为SIoU函数,以减少模型收敛不稳定问题,提高模型的鲁棒性;实验结果表明,改进的算法在BDD100K公开数据集上的检测精度和速度分别达到了59.8% mAP和96.2 FPS,相比原算法检测精度提高了2.5%;这表明改进的算法在满足实时性要求的同时,具备良好的检测精度,适用于复杂情况下的交通目标检测任务。  相似文献   

20.
针对高分辨率液晶显示器产品(liquid crystal display, LCD)质量在线检测需求,基于深度学习提出一种LCD缺陷自动检测方法。通过设计自适应浅层特征提取层,并引入稀疏卷积结构,多维度、多尺度的提取深层特征,采用迁移学习和深度卷积生成对抗生网络扩充数据强化训练,构建基于小样本学习的LCD表面缺陷检测模型。其特征在于,采用设计的自动分割与定位预处理软件将高分辨率图像划分成适于卷积神经网络学习的图像子块,并根据模型对图像子块的判定类别和定位坐标,同时获取多类型缺陷检测结果。实验结果表明,本文模型可以有效提高检出率,并减少漏检率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号