首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
SrAl2O4 co-doped with Cu2+ and Eu3+ was prepared at high temperature in a weakly oxidizing atmosphere by solid states reaction. X-ray diffraction (XRD) pattern of the sample shows that the doped sample exhibits SrAl2O4 crystalline phase. No characteristic peaks of dopant have been observed in XRD pattern of doped sample. The excitation and emission spectra of CuEu:SrAl2O4, Eu:SrAl2O4, Cu:SrAl2O4 samples consist of many sharp peaks. The excitation and emission spectra of the SrAl2O4 sample co-doped with Cu2+ and Eu3+ are significantly different from those of Eu:SrAl2O4 and Cu:SrAl2O4 samples. The novel photoluminescence (PL) characteristic of the co-doped sample is attributed to the composite luminescence of Cu2+ and Eu3+ ions in SrAl2O4 matrix.  相似文献   

2.
This work is aimed to determine the influence of the europium concentration on the photoluminescent and thermoluminescent properties of the HfO2:Eu3+ synthesized by hydrothermal method. Samples were prepared at Eu3+ contents of 0, 1, 3, 5 and 7?at%. The structural, morphological, photoluminescent and thermoluminescent characteristics of the material, as well as the kinetic parameters of the glow curve when it was exposed to UV radiation at 254?nm are presented. The maximum response for the photoluminescence and thermoluminescence properties, with an integrated signal more than six times greater than the signal obtained for the intrinsic sample, was found for the sample with 5?at% Eu3+. Nanocrystal sizes of 28?nm were obtained for the pure sample and 46?nm for the sample doped with the highest concentration of Eu3+.The microcrystals showed a preferential growth in the (022) direction.  相似文献   

3.
SrAl2O4:Eu2+,Dy3+ phosphors can convert near ultraviolet light with lower sensitivity to the solar cell to yellow‐green light at which the solar cell has higher sensitivity and exhibit the excellent luminescent property of long persistence. Therefore, in this study, the authors firstly synthesized the fine SrAl2O4:Eu2+,Dy3+ phosphors and then produced SrAl2O4:Eu2+,Dy3+/SiO2 composite films as spectral shifters to understand the effects of SrAl2O4:Eu2+,Dy3+ phosphor on photoelectric conversion efficiencies of a crystalline silicon photovoltaic module. Under one sun illumination, the composite film containing an appropriate amount of SrAl2O4:Eu2+,Dy3+ phosphor enhances the photoelectric conversion efficiency of the cell through spectral down‐shifting as compared to the bare glass substrate, and the maximum achieves 11.12%. In contrast, the commercial SrAl2O4:Eu2+,Dy3+ phosphor composite film is not effective for improving the photoelectric conversion efficiency because of the relatively lower visible light transmittance of film caused by the large aggregates. After one sun illumination for 1 min, the light source was turned off, and the cell containing the synthesized SrAl2O4:Eu2+,Dy3+ phosphor still shows an efficiency of 1.16% in the dark due to the irradiation by the long persistent light from SrAl2O4:Eu2+,Dy3+, which provides a possibility to fulfill the operation of solar cells even in the dark.  相似文献   

4.
SrAl2O4:Eu2+,Dy3+ phosphors were prepared by solid-state reaction from milled SrCO3. The effect of milling treatment of SrCO3 on the formation and physical properties of SrAl2O4 phosphors was investigated by DTA, XRD, BET, SEM and PL. The results indicate that small crystallite size and large specific surface area of the milled SrCO3 were able to increase the contact points between the reactants and to reduce the average transport distance for materials diffusion. Therefore, the solid-state reaction can be accelerated and the formation of SrAl2O4 was facilitated. On the other hand, the number of nucleation sites was also suggested to be increased that leads to a decrease in SrAl2O4 crystallite size and an increase in specific surface area. The increased specific surface area was proposed to increase the emission intensity and afterglow decay.  相似文献   

5.
The investigation on single phase multi-color phosphors is highly meaningful for near-ultraviolet chip based white light emitting diodes. In this work, a series of Eu2+ and Tb3+ singly doped and Eu2+/Tb3+ codoped Sr5(PO4)3Cl phosphors were synthesized via a high-temperature solid state reaction method. The luminescence spectra and decay curves of Eu2+ and Tb3+ singly doped samples were discussed, the optimal doping concentrations were determined. Thanks to the spectra overlap between Eu2+ and Tb3+, nonradiative energy transfer from Eu2+ to Tb3+ was investigated. It is found electric dipole-dipole interaction played the main role for the energy transfer in codoped samples, the highest energy transfer efficiency was calculated to be 60.98%. Tunable emissions are observed for codoped samples by adjusting doping concentration. The thermal quenching properties were discussed and the activation energy (ΔE) was estimated in the present work.  相似文献   

6.
A series of single-component blue, green and red phosphors have been fabricated based on the Ca3Gd(GaO)3(BO3)4 host through doping of the Ce3+/Tb3+/Eu3+ ions, and their crystal structure and photoluminescence properties have been discussed in detail. A terbium bridge model via Ce3+ → Tb3+ → Eu3+ energy transfer has been studied. The emission colours of the phosphors can be tuned from blue (0.1661, 0.0686) to green (0.3263, 0.4791) and eventually to red (0.5284, 0.4040) under a single 344 nm UV excitation as the result of the Ce3+ → Tb3+ → Eu3+ energy transfer. The energy transfer mechanisms of Ce3+ → Tb3+ and Tb3+ → Eu3+ were found to be dipole-dipole interactions. Importantly, Ca3Gd(GaO)3(BO3)4:Ce3+,Tb3+,Eu3+ phosphors had high internal quantum efficiency. Moreover, the study on the temperature-dependent emission spectra revealed that the Ca3Gd(GaO)3(BO3)4:Ce3+,Tb3+,Eu3+ phosphors possessed good thermal stability. The above results indicate that the phosphors can be applied into white light-emitting diodes as single-component multi-colour phosphors.  相似文献   

7.
The polycrystalline Eu2+ and Dy3+ codoped strontium aluminates SrAl2O4: Eu2+,Dy3+ were prepared by a solid-state reaction. The UV-excited photoluminescence, persistent luminescence, and thermoluminescence of the SrAl2O4: Eu2+,Dy3+ phosphors with different compositions and ion doping was studied and compared. The results showed that the Eu2+ ion doped in SrAl2O4: Eu2+,Dy3+ phosphors is not only the UV-excited luminescent center but also the persistent luminescent center. The Dy3+ ion introduced into SrAl2O4: Eu2+ crystal matrix can hardly yield any luminescence under UV excitation but acts as an electron trap with a suitable depth for persistent luminescence. The Dy3+ codoping would effectively enhance the persistent luminescence and thermoluminescence. Different codoping RE 3+ ions have a different effect on persistent luminescence. Only the RE 3+ ions (for example, Dy3+ and Nd3+), which have suitable optical electronegativity, can form suitable electron traps and effectively improve the persistent luminescence of SrAl2O4: Eu2+. Based on the above observations, a persistent luminescence mechanism, electron transfer model, was proposed and illustrated. The text was submitted by the authors in English.  相似文献   

8.
Eu2+/Eu3+ ions doped silica glasses contained In2O3 nanoparticles (NPs) have been fabricated by using nanoporous silica glasses. Interestingly, efficient energy transfer from In2O3 NPs to Eu2+/Eu3+ ions enhanced the photoluminescence (PL) emission of Eu2+/Eu3+ ions, which derives from lattice defects in In2O3 NPs. Our work has not only demonstrated a facile way to fabricate NPs and rare earth ions co-doped silica glasses, but also extended the applications of semiconductor oxide NPs such as In2O3 NPs.  相似文献   

9.
Barium europium(II) aluminate (BaxEu1?xAl2O4) powders were prepared by a solid-state reaction among barium carbonate (BaCO3), europium oxide (Eu2O3), and alumina (Al2O3) powders at 1400 °C for 3 h under a mixed gas flow of H2 and N2. The powders were characterized by powder X-ray diffraction (XRD), infrared and Raman spectroscopy, and photoluminescence (PL). With increasing Ba2+ content in BaxEu1?xAl2O4, the structure of BaxEu1?xAl2O4 changed from a monoclinic (P21) to hexagonal (P63) phase. The hexagonal (P6322) phase was also observed between the two phases. The XRD pattern of a single Ba0.6Eu0.4Al2O4 phase, which has not been reported in the literature, was refined by the Rietveld method and its structure was confirmed by selected-area electron diffraction. With increasing x value, the emission peak in the PL spectra of BaxEu1?xAl2O4 became weaker (x = 0–0.4) and then more intense (x = 0.6–0.98), and its position showed a blue shift from 520 to 498 nm.  相似文献   

10.
Rhabdophane-type Eu3+,Tb3+-codoped LaPO4·nH2O single-crystal nanorods with the compositions La0.99999-xEuxTb0.00001PO4·nH2O (x?=?0–0.03), La0.99999-yTbyEu0.00001PO4·n′H2O (y?=?0–0.010), and La0.99999-zTbzEu0.000007PO4·n′′H2O (z?=?0–0.012) were hydrothermally synthesized with microwaves. It is shown that the Eu3+,Tb3+ codoping does not affect the thermal stability of these nanorods, which is due to the formation of substitutional solid solutions with both Eu3+ and Tb3+ replacing La3+ in the crystal lattice. Moreover, it is also shown that monazite-type Eu3+,Tb3+-codoped LaPO4 single-crystal nanorods can be obtained by calcining their rhabdophane-type Eu3+,Tb3+-codoped LaPO4·(n,n′ or n′′)H2O counterparts at moderate temperature in air, and that they are thermally stable. It is also observed that, for the same Eu3+,Tb3+-codoping content, the monazite-type Eu3+,Tb3+-codoped LaPO4 nanorods exhibit higher photoluminescent efficiency than the rhabdophane-type Eu3+,Tb3+-codoped LaPO4· (n,n′ or n′′)H2O nanorods. Moreover, it is found that the highest photoluminescence emission corresponds to the monazite-type La0.96999Eu0.02Tb0.00001PO4 nanorods for the La0.99999-xEuxTb0.00001PO4 system. However, for those compositions energy transfer from Tb3+ to Eu3+ does not occur. In addition, for an efficient energy transfer to occur, a content of at least 1?mol% Tb3+ is needed in all the studied materials.  相似文献   

11.
An amino‐terminated long persistent luminescent phosphor (Amino‐SrAl2O4:Eu2+,Dy3+) was prepared based on inorganic SrAl2O4:Eu2+,Dy3+ phosphor, chemically modified with 3‐aminopropyltriethoxysilane (KH550). Fourier transform infrared and X‐ray photoelectron spectral, thermogravimetric and scanning electron microscopic measurements confirmed the successful synthesis of Amino‐SrAl2O4:Eu2+,Dy3+. Then this amino‐functionalized phosphor was introduced into polyurethane (PU) through urea linkages, and the effects of the chemical combination of Amino‐SrAl2O4:Eu2+,Dy3+ and PU on the morphology, structure, storage stability, and mechanical, thermal and luminescent properties of the resultant long persistent luminescent polyurethane (LPLPU) were investigated. Compared with SrAl2O4:Eu2+,Dy3+/PU composites prepared by physical blending, the LPLPU shows better mechanical properties and storage stability due to the good compatibility of Amino‐SrAl2O4:Eu2+,Dy3+ with PU. More residues and higher initial decomposition temperature are observed because the interaction of the amino‐phosphor and PU delays the degradation. Study of the luminescent effect reveals that the LPLPU shows more than 10 h afterglow after cessation of the excitation light, and the brightness of green light in darkness is basically the same as that of LPLPU and SrAl2O4:Eu2+,Dy3+/PU. © 2016 Society of Chemical Industry  相似文献   

12.
《Ceramics International》2017,43(11):8276-8283
Nanostructured phosphors LaPO4:Eu3+/Tb3+ were prepared via a combined approach using microwave heating and a bifunctional solvent (ethylene glycol) acting as both microwave absorber and capping agent. The synthesized samples were characterized by X-ray diffraction (XRD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), transmission electron microscopy (TEM) and photoluminescence (PL) measurements. All samples crystallized in a monoclinic monazite-type structure. Electron microscopy analysis revealed a hierarchical organization of self-assembled seed crystals of lanthanum phosphate into nanoparticles that, in turn, gave rise to sponge-like aggregates. The co-doped samples exhibited self-activated blue luminescence from the host matrix, as well as red and green emissions due to the presence of Eu3+ and Tb3+ ions, respectively. Furthermore, the spectroscopic analysis indicated energy transfer from terbium to europium ions.The synthetic route described here is efficient to prepare nanomaterials with advanced optical properties, which exhibit a potential for applications in photonics, sensing and biolabelling.  相似文献   

13.
In this paper, Ba3P4O13:Eu2+ phosphor was synthesized by a solid-state reaction. The photoluminescence (PL) emission spectrum and luminescence decay kinetics confirm that the doped Eu2+ ions can occupy two different Ba2+ sites. The PL excitation spectrum shows a broad band matching well with the emission of near-UV chip. Ba3P4O13:Eu2+ is a promising phosphor for near-UV chip excited white LEDs. The doped Eu3+ ions can also be reduced to Eu2+ ions in air atmosphere at high temperature. Charge compensation mechanism is applied to explain this kind of abnormal reduction.  相似文献   

14.
SrAl2O4: (Eu2+, Dy3+) phosphor was prepared by solid state reaction. B2O5 as a flux was added in SrAl2O4:(Eu 2+, Dy3+) in order to accelerate a solid state reaction. In this paper, the effects of B2O3 on the crystal structure and the phosphorescent properties of the material have been evaluated. The synthesized phosphor exhibited a broad band emission spectrum peaking at 520 nm, and the spectrum peak showed little effect by the B2O3 contents. The maximum afterglow intensity of the SrAl2O4: (Eu2+, Dy3+) phosphor was obtained at the B2O3 content of 5%. Adding the B2O3 caused uniform distortion to the crystal structure of the phosphor and resulted in reducing the lengths of a and c axes and Β angle of the SrAl2O4 crystal. The uniform distortion was accompanied with crystal defects which can trap the holes generated by the excitation of Eu2+ ions. The afterglow characteristic of the SrAl2O4: (Eu2+, Dy3+) phosphor was thus enhanced.  相似文献   

15.
《Ceramics International》2017,43(18):16323-16330
The tricolor-emitting MgY4Si3O13: Ce3+, Tb3+, Eu3+ phosphors for ultraviolet-LED have been prepared via a high-temperature solid-state method. X-ray diffraction, photoluminescence emission, excitation spectra and fluorescence lifetime were utilized to characterize the structure and the properties of synthesized samples. Two different lattice sites for Ce3+ are occupied from the host structure and the normalized PL and PLE spectra. The emissions of single-doped Ce3+/Tb3+/Eu3+ are located in blue, green and red region, respectively. The energy transfer from Ce3+ to Tb3+ and from Tb3+ to Eu3+ has been validated by spectra and decay curves and the energy transfer mode from Tb3+ to Eu3+ was calculated to be electric dipole-dipole interactions. By adjusting the content of Tb3+ and Eu3+ in MgY4Si3O13: Ce3+, Tb3+, Eu3+, the CIE coordinates can be changed from blue to green and eventually generate white light under UV excitation. All the results indicate that the MgY4Si3O13: Ce3+, Tb3+, Eu3+ phosphors are potential candidates in the application of UV-WLEDs.  相似文献   

16.
A new vanadate Ca3LiMgV3O12 and its Eu3+-doped counterparts were synthesized. Rietveld confinement result of Ca3LiMgV3O12 host indicates that it belongs to cubic space group Ia-3d with parameters of a =?12.4300?Å, V =?1920.49?Å3, Z?=?8. Under UV excitation, pure Ca3LiMgV3O12 exhibits a bluish-green broadband emission at 490?nm, while Eu3+ doped Ca3LiMgV3O12 shows one bluish-green broad band with a series of red sharp peaks, which originate from the V5+-O2- charge transfer and the Eu3+ intra-4f transitions, respectively. The occurrence of VO4→Eu3+ energy transfer is confirmed by decay lifetime analysis and time-resolved emission spectra. It is found that emitting color varies from bluish-green to orange-red with increasing Eu3+ concentration. VO4 bluish-green and Eu3+ red emission shows different thermal quenching response with increasing temperature, due to their different activation energy.  相似文献   

17.
A novel and facile synthetic approach has been trialed, and attempted with success in the preparation of two phosphors namely, a red emitting CaSrSiO4:Eu3+ and a green emitting CaSrSiO4:Eu2+. These phosphors were successfully synthesized using a simple co-precipitating solvo-thermal strategy wherein tetraethyl orthosilicate (TEOS) as silica source and the acetate precursors of strontium (Sr2+), calcium (Ca2+) and europium (Eu3+) are utilized. The material so obtained is subjected to an extensive photoluminescence behavior study. The concentration of the dopant (Eu3+and Eu2+) plays a significant role in the determination of photoluminescence behavior and hence a systematic and in-depth experimental studies were done and the results are synchronized. On interpretation of the output, it came to light that an intense emission signals sparked in the red region (590 and 615 nm) in the case of phosphor doped with Eu3+, which is excited under near ultra violet (395 nm) and blue (466 nm) region. In case of the CaSrSiO4 sample doped with Eu2+, an intense broad green signal (~510 nm) is obtained under the excitation range of 350–430 nm. The results obtained are quite encouraging and made a strong confirmation as, the solvo-thermally synthesized CaSrSiO4, which is activated by the dopants namely Eu3+ and Eu2+ possesses an immense potential and it is exactly tapped by the adopted methodology. Despite its strong impact, it will also assure a strong revolution in the fabrication and thus the commercialization of white LEDs as both the red and green emitting phosphor.  相似文献   

18.
A series of Eu3+-doped C12H18Ca3O18 phosphors were synthesized through a facile hydrothermal method and the properties of as-prepared phosphors were explored by X-ray diffractometer (XRD), scanning electron microscope (SEM), and photoluminescence (PL) spectrometer. The exploration results indicated that the C12H18Ca3O18:Eu3+ had been successfully synthesized. The morphology of C12H18Ca3O18:Eu3+ was a strip with the size of 100–4000 nm × 50–400 nm × 50–200 nm and the ratio of length to width of 2–80. The strongest emission peak of C12H18Ca3O18:Eu3+ around 620 nm was ascribed to 5Do7F2 transition of Eu3+, and the peaks centered at 590, 653 and 694 nm respectively corresponded to 5Do7F1, 7F3, and 7F4 transitions. C12H18Ca3O18: Eu3+ gave the red light emission, as indicated by color coordinate analysis. The photoluminescence intensity of the phosphors prepared under the Eu3+ concentration of 6% was the highest. The crystal structure of C12H18Ca3O18:Eu3+ was changed after europium ions occupied the lattice position of calcium ions. Europium ion could displace calcium arbitrarily. As a new kind of matrix, calcium citrate possesses the properties of both organic and inorganic compounds and the luminescent C12H18Ca3O18: x Eu3+ particles may be applied in biological fluorescent tags and luminescent materials.  相似文献   

19.
In present work, a series of Eu doped zinc borate, ZnB2O4, phosphors prepared via wet chemical synthesis and their structural, surface morphology, cathodoluminescence (CL) and thermoluminescence (TL) properties have been studied. Phase purity and crystal structure of as-prepared samples are confirmed by X-ray diffraction measurements (XRD) and they were well consistent with PDF card No. 39-1126, indicating the formation of pure phase. The thermoluminescence (TL) behaviors of Eu activated ZnB2O4 host lattice are studied for various beta doses ranging from 0.1 to 10?Gy. The high-temperature peak of Eu activated sample located at 192?°C exhibited a linear dose response in the range of 0.1–10?Gy. Initial rise (IR) and peak shape (PS) methods were used to determine the activation energies of the trapping centres. The effects of the variable heating rate on TL behaviour of Eu activated ZnB2O4 were also studied. When excited using an electron beam induced light emission (i.e cathodoluminescence, CL) at room temperature (RT), the as-prepared phosphors generate reddish-orange color due to predominant emission peaks of Eu3+ ions located at 576–710?nm assigned to the 5D07FJ (J=1,2,3, and 4) transitions. The maximum CL intensity for Eu3+ ions at 614?nm with transition 5D07F2 was reached Eu3+ concentration of 5?mol%; quenching occurred at higher concentrations. Strong emission peak for Eu3+ ions at 614?nm with transition 5D07F2 is observed. The CL experimental data indicate that ZnB2O4:Eu3+ phosphor as an orange-red emitting phosphor may be promising luminescence materials for the optoelectronic applications.  相似文献   

20.
A series of color tunable Tb3+‐ and Eu3+‐activated Sr2P2O7 phosphors were synthesized by a traditional solid‐state reaction method in air atmosphere. The crystal structure, photoluminescence (PL) properties, energy transfer, thermal stability, and luminous efficiency were investigated. A series of characteristic emission of Tb3+ and Eu3+ were observed in the PL spectra and the variation in the emission intensities of the three emission peaks at around 416 nm (blue), 545 nm (green), and 593 nm (orange‐red) induced the multicolor emission evolution by tuning the Tb3+/Eu3+ content ratio. The energy‐transfer mechanism from Tb3+ to Eu3+ ion was determined to be dipole–dipole interaction, and the energy‐transfer efficiency was about 90%. The novel phosphors have excellent thermal stability in the temperature range of 77–473 K and the Commission International De L'Eclairage 1931 chromaticity coordinates of Sr2P2O7: Tb3+, Eu3+ex = 378 nm) move toward the ideal white light coordinates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号