首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The structure and properties of high-density polyethylene (HDPE) functionalized through ultraviolet irradiation in air and its blends with CaCO3 were studied by Fourier transfer infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), contact angle measurement, Molau test, and mechanical properties test. The experimental results reveals that oxygen-containing groups such as C = O and C - O were introduced onto the molecular chains of HDPE through ultraviolet irradiation in air, and the groups' concentration increases with irradiation time. After irradiation, the water contact angle of HDPE becomes smaller, showing that the hydrophilicity of irradiated HDPE increases. Compared with those of HDPE/CaCO3 blend, the dispersion of CaCO3 particles in irradiated HDPE/CaCO3 blend, the interface interaction between CaCO3 particles and irradiated HDPE matrix, and the mechanical properties of irradiated HDPE/CaCO3 blend are improved due to the introduction of polar groups.  相似文献   

2.
The mechanical properties of CaCO3 filled high density polyethylene (HDPE) compatibilized with ultraviolet (UV) irradiated HDPE (uHDPE) were studied and the interfacial interactions between CaCO3 and the polymers were evaluated by SEM, the Molau test, and ESCA. UV irradiation in air introduces the following functional groups on HDPE: >COOH, >C?O, ? OOH and ? OH. The concentration of these groups increases with irradiation time. The addition of a small amount (<10% by wt) of uHDPE to the HDPE/CaCO3 improves the tensile and impact strength. For example, the addition of 3% HDPE irradiated for 500 hours (u500HDPE) increases the tensile and impact strength of HDPE/CaCO3 from 16.7 MPa and 210 J/m to 25.2 MPa and 430 J/m, respectively. Chemical reactions between uHDPE and CaCO3 promote interactions between HDPE and CaCO3. The morphology of the compatibilized compound is nearly homogenous, and no CaCO3 sediment was observed in a hot xylene solution of HDPE/u500HDPE/CaCO3 when the content of u500HDPE exceeded 30% (wt).  相似文献   

3.
High density polyethylene (HDPE) was functionalized quickly by ultraviolet irradiated in ozone atmosphere. The oxygen-containing groups in the functionalized HDPE were C=O and C–O, and their content increased with increasing the irradiation time. The molecular weight of the functionalized HDPE decreased and its distribution became wider with increasing the irradiation time. The gel was not found in the functionalized HDPE. Compared with those of HDPE, the melting temperature and crystallinity of the functionalized HDPE decreased. With increasing the irradiation time, the hydrophilicity of the functionalized HDPE was enhanced, while its temperature of thermal decomposition decreased. The functionalized HDPE/CaCO3 composites were prepared. Compared with those of HDPE/CaCO3 composites, the compatibility and dispersion of the functionalized HDPE/CaCO3 composites were enhanced observably. The tensile strength and notch impact strength of the functionalized HDPE/CaCO3 composites increased with increasing the irradiation time.  相似文献   

4.
The structure and properties of high density polyethylene (HDPE) functionalized by ultraviolet irradiation at different light intensities in air were studied by electron analysis, FTIR spectroscopy, contact angle with water, differential scanning calorimetry and mechanical properties measurement. The results show that oxygen‐containing groups such as C?O, C—O and C(?O)O were introduced onto the molecular chain of HDPE following irradiation, and the rate and efficiency of HDPE functionalization increased with enhancement of irradiation intensity. After irradiation, the melting temperature, contact angle with water and notched impact strength of HDPE decreased, the degree of crystallinity increased, and their variation amplitude increased with irradiation intensity. Compared with HDPE, the yield strength of HDPE irradiated at lower light intensity (32 W m?2 and 45 W m?2) increases monotonically with irradiation time, and the yield strength of HDPE irradiated at higher light intensity (78 W m?2) increases up to 48 h and then decreased with further increase in irradiation time. The irradiated HDPE behaved as a compatibilizer in HDPE/polycarbonate (PC) blends, and the interface bonding between HDPE and PC was ameliorated. After adding 20 wt% HDPE irradiated at 78 W m?2 irradiation intensity for 24 h to HDPE/PC blends, the tensile yield strength and notched Izod impact strength of the blend were increased from 26.3 MPa and 51 J m?1 to 30.2 MPa and 158 J m?1, respectively. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
A series of binary composites based on HDPE (high density polyethylene) and nanoinorganic particles such as nano‐CaCO3 and OMMT (organic montmorillonite) were prepared. Their properties including tensile, impact strength, and some thermal properties were tested. The results showed that binary composite has partial improvement in mechanical properties compared with pure HDPE. A ternary composite nano‐CaCO3/OMMT/HDPE was prepared and characterized. It was found that the mechanical and thermodynamic properties of this ternary composite have been enhanced greatly compared with both pure HDPE and binary composites. The tensile strength, Young's modulus, flexural strength, elastic modulus, and impact strength of nano‐CaCO3/OMMT/HDPE were increased 124.6%, 302.7%, 73.86%, 58.97%, and 27.25%, respectively. The DMA test results showed that the mechanical properties of ternary composite were increased because of the limitation on the movement of HDPE due to inorganic particles. The synergistic effect introduced by nanoparticles may play an important role in all these processes. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

6.
High density polyethylene (HDPE) is toughened by particles of rigid inorganic filler CaCO3, which is treated with phosphate. The stress-strain curve of the HDPE/modified-CaCO3 (80/20) composite covers a greater area than that of HDPE, and the impact strength of HDPE is greatly improved by modified CaCO3 from 230 J/m to 580 J/m as CaCO3 content is increased to 50 wt%. Morphological observation indicates a finer dispersion of the modified-CaCO3 particles and a large plastic deformation of HDPE. The cavitation and stress field interaction around the particles are considered to explain the toughening mechanism.  相似文献   

7.
A new self‐designed mechanochemical reactor, inlaid pan‐mill, was used in studying high density polyethylene (HDPE) and calcium carbonate (CaCO3) blends. The effects of CaCO3 on the crushing and structure of HDPE matrix and the properties of HDPE/CaCO3 blends were investigated. Scanning electron microscopy, Fourier transformed IR spectroscopy, dynamical mechanical testing analysis, capillary rheometer, and Instron material testing system were used to characterize the structure of HDPE and evaluate the properties of HDPE/CaCO3 blends. The introduction of calcium carbonate during milling improved milling efficiency, and time needed for each cycle was greatly reduced. Oxygen‐containing groups on HDPE chains, which were produced during milling, increased interfacial interactions and improved the dispersion and distribution of calcium carbonate particles in HDPE/CaCO3 blends. Rheological, thermal, and mechanical properties were also improved. The elongation at break of milled blends with high concentrations of calcium carbonate was significantly higher than that of unmilled blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1459–1464, 1999  相似文献   

8.
High Density Polyethylene (HDPE) and calcium carbonate (CaCO3) nanocomposites were prepared from masterbatch by melt blending in twin screw extruder (TSE). The physical properties of HDPE/CaCO3 nanocomposites samples (0, 10 and 20?wt% CaCO3 masterbatch) were investigated. The morphology, thermal, rheological/viscoelastic and mechanical properties of the nanocomposites were characterized by Atomic Force microscopy (AFM), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analyzer (DMA) as well as tensile test. The AFM images showed homogeneous dispersion and distribution of nano-CaCO3 in the HDPE matrix. The DSC analysis showed a decrease in crystallinity of HDPE/CaCO3 nanocomposites with the increase of CaCO3 loading. This was due to the presence of nanofiller which could restrict the movement of the polymer chain segments and reduced the free volume/spaces available to be occupied by the macromolecules, thus, hindered the crystal growth. However, there was an increase in crystallization temperature about 1?C2?°C with the addition of CaCO3. It was suggested that the CaCO3 nanoparticles acted as nucleating agent. In melt rheology study, the complex viscosities of HDPE/CaCO3 nanocomposites were higher than the HDPE matrix and increased with the increasing of CaCO3 masterbatch loading. The DMA results showed that the storage modulus increased with the increasing of nano-CaCO3 contents. The improvement was more than 40?%, as compared to that of neat HDPE. Additionally, the tensile test results showed that with the addition of CaCO3 masterbatch, modulus elasticity of nanocomposites sample increased while yield stress decreased.  相似文献   

9.
Nonisothermal crystallization of high density polyethylene (HDPE)/maleic anhydride‐modified HDPE(manPE)/nanoscale calcium carbonate (CaCO3) nanocomposite was investigated by means of wide angle X‐ray diffraction (WAXD), polarized optical microscopy (POM), and differential scanning calorimetry (DSC). WAXD indicated that the crystallinity was reduced with the addition of CaCO3. The spherulite size of HDPE increased in the presence of manPE, but decreased when CaCO3 was added from observation of POM. A modified Avrami analysis, Ozawa analysis, and Liu analysis were applied to the nonisothermal crystallization process. Crystallizability followed the order: HDPE/manPE/CaCO3 > HDPE/CaCO3 > HDPE/manPE > HDPE when undercooling was taken into account. Dependence of the effective activation energy on the relative crystallinity was estimated by the Friedman equation, and the results were used to calculate the parameters (Kg and U*) of Lauritzen‐Hoffman's equation by Vyazovkin's method. These results indicate that the addition of maleic anhydride groups and CaCO3 tend to promote the nucleation of spherulites on their surfaces and lead to epitaxial growth of the crystallites. But at the same time, manPE and CaCO3 particles may hinder the transport of the molecule chains resulting in a decrease of the crystallization growth rate. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

10.
The oxygen-containing groups such as C–O, C=O, and C(=O)O were quickly introduced onto high-density polyethylene (HDPE) chains through ultraviolet irradiation in ozone atmosphere, and the functionalized HDPE was prepared. The content of the C–O, C=O, and C(=O)O groups increased with increasing the irradiation time. There was no gel in the functionalized HDPE. Compared with that of HDPE, the crystal form, cell parameters, and face space of the functionalized HDPE did not change, and its melting temperature and thermal stability decreased, while the crystallinity, hydrophilicity, and melt index increased. The functionalized HDPE/Sericite–Tridymite–Cristobalite (STC) (60/40) composite was prepared by melting blend. Compared with that of the HDPE/STC composite, the interfacial interaction and the dispersion of the STC particles in the functionalized HDPE/STC composite were improved markedly. With increasing the irradiation time, the tensile strength and notched impact strength of the functionalized HDPE/STC composite increased, while its melt index decreased.  相似文献   

11.
Generally, recycled polymer blends exhibit solid dispersion‐like morphology with poor mechanical properties. The aim of this work was to enhance the mechanical properties of a HDPE/PS (75/25) blend, in particular the stiffness and the impact strength. In order to improve the stiffness, CaCO3 filler was incorporated. It was shown that PS and CaCO3 were separately dispersed with poor adhesion to the HDPE matrix. The incorporation of CaCO3 significantly enhanced the stiffness but lowers the impact resistance. Elastomer copolymers were incorporated in order to compensate for the embrittlement caused by the CaCO3 filler. Depending on their chemical structure, either grafted with a reactive function or ungrafted, the elastomers acted differently at the interfaces of the HDPE/PS/CaCO3 system. SEBS acts exclusively at the HDPE‐PS interface whereas SEBSgMA acts at both the HDPE‐PS and the HDPE‐CaCO3 interface. The SEBSgMA elastomer lowered the stiffening effect caused by CaCO3 and provided an insufficient increase in impact properties. One the other hand, SEBS, which concentrates its action at the HDPE‐PS interface, retained much of the stiffening effect of CaCO3 and provided a greater improvement in impact properties than SEBSgMA. In the recycled HDPE/PS (75/25) blend, the incorporation of 20 vol% CaCO3 and 4 vol% SEBS led to an increase in both impact strength (from 39 to 70 kJ/m2) and in stiffness (from 1335 to 1560 MPa). So, encouraging results were obtained, enabling us to predict a promising future for this approach to the recycling of commingled plastics.  相似文献   

12.
The effect of high‐energy mechanical milling of CaCO3 (calcium carbonate) and STC (a mixture of sericite, tridymite and cristobalite) on mechanical properties, rheological and dynamical mechanical behavior of high‐density polyethylene (HDPE)/CaCO3 and HDPE/STC was studied through SEM (scanning electron microscope), DMTA (dynastic mechanical test analysis), mechanical and melt rheological properties tests. The experimental results show that addition of fillers treated by coupling agent and vibromilling to HDPE makes the impact strength of HDPE greatly increased. The impact strength of HDPE/treated CaCO3 (60/40) and HDPE/treated STC (60/40) is ca. 4 and 3 times respectively as high as that of HDPE. The SEM micrographs of impact fractured surfaces of treated fillers filled HDPE show extensive plastic deformation of HDPE matrix, indicating that the plastic deformation of matrix induced by the treated fillers is the main contribution for absorbing a great amount of impact energy. This is the reason why the impact strength of HDPE greatly increases with addition of coupling agent and vibromilling treated fillers. The intensity of γ relaxation peak of HDPE in HDPE/treated CaCO3 on tanδ vs. temperature curve increases and the peak shifts to higher temperature due to its stronger interface interaction as compared with that of HDPE/untreated CaCO3.  相似文献   

13.
β‐Polypropylene composites containing calcium carbonate treated by titanate coupling agent (T‐CaCO3) and maleic anhydride grafted PP (PP‐g‐MAH) were prepared by melt compounding. The crystallization, morphology and mechanical properties of the composites were investigated by means of differential scanning calorimetry, wide‐angle X‐ray diffraction, polarized light microscopy, scanning electron microscopy and mechanical tests. It is found that both T‐CaCO3 and NT‐C are able to induce the formation of β‐phase, and NT‐C greatly increases the β content and decreases the spherulitic size of PP. PP‐g‐MAH facilitates the formation of β‐form PP and improves the compatibility between T‐CaCO3 and PP. Izod notched impact strength of β‐PP/T‐CaCO3 composite is higher than that of PP/T‐CaCO3 composite, indicating the synergistic toughening effect of T‐CaCO3 and β‐PP. Incorporation of PP‐g‐MAH into β‐PP/T‐CaCO3 composite further increases the content of β‐crystal PP and improves the impact strength and tensile strength when T‐CaCO3 concentration is below 5 wt%. The nonisothermal crystallization kinetics of β‐PP composites is well described by Jeziorny's and Mo's methods. It is found that NT‐C and T‐CaCO3 accelerate the crystallization rate of PP but the influence of PP‐g‐MAH on crystallization rate of β‐PP composite is marginal. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
The dependencies of the notched Izod impact toughness of HDPE / CaCO3 blends on CaCO3 particle concentration and particle size are analyzed. It was found that the notched Izod impact strength (S) of HDPE / CaCO3 blends depends discontinuously on CaCO3 particle concentration. A brittle-ductile transition occurs when the CaCO3 volume fraction (Vf) increases to a critical value (f). Furthermore, a brittle-ductile transition master curve can be constructed by taking the matrix ligament thickness (L) into account as a parameter instead of Vf. The results show that the critical matrix ligament thickness (Lc) is a single parameter for the transition and Lc = 5.2μm for HDPE / CaCO3 blends. The impact strength, however, varies considerably with CaCO3 particle size, which shows that CaCO3 particle size is another dominating parametor for the toughness of HDPE / CaCO3 blends. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
In this article, sulfonated ethylene‐propylene‐diene monomer terpolymer (H–SEPDM) was used to treat CaCO3 particles. CaCO3 particles are encapsulated by H–SEPDM through the reaction of sulfonic acid group (? SO3H) in H–SEPDM with CaCO3 to improve the interface adhesion of CaCO3 with HDPE. In case the treated CaCO3 is blended with HDPE, a brittle–ductile transition occurs. The impact strength of the blend rises sharply at 25–30 wt % CaCO3, and amounts to more than 700 J/m, four times as high as that of HDPE at 30 wt % CaCO3, without much loss of its yield strength and modulus. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2140–2144, 2001  相似文献   

16.
17.
The ultraviolet radiation aging behaviors of PVC/CaCO3 and PVC/CaCO3/macromolecular modifier composites were studied through whiteness measurement, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, scanning electron microscopy, and mechanical properties test. It was found that nano‐CaCO3 particles used as ultraviolet light screening agents could significantly enhance the antiaging properties of PVC materials. Due to the macromolecular modifier coated on nano‐CaCO3 particles, the compatibility of nano‐CaCO3 and PVC matrix was improved, resulting in uniform dispersion of nano‐CaCO3 in PVC matrix. Therefore, the PVC/CaCO3/MP composite exhibited better antiaging properties than PVC/CaCO3 composite. After 12 h of ultraviolet irradiation, the tensile strength retention, elongation at break retention, and impact strength retention of PVC/CaCO3/MP composite were 79.5%, 74.5%, and 75.3%, which were much higher than that of neat PVC and PVC/CaCO3 composite. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
C? O, C?O, and C(?O)O oxygen‐containing groups were introduced onto the molecular chain of high‐density polyethylene (HDPE) through ultraviolet irradiation in air. The introduction rate of the oxygen‐containing groups onto HDPE increased with increasing environmental temperature. After ultraviolet irradiation, the molecular weight of HDPE decreased, and its distribution became wider; the melting temperature, contact angle with water, and impact strength decreased; the degree of crystallinity and yield strength increased; and their variation amplitude increased with environmental temperature. The environmental temperature had an effect on the gel content of irradiated HDPE. HDPE‐irradiated for 48 h at 35° and 50°C were not crosslinked. However, gelation took place in HDPE irradiated for 24 h at 70°C. HDPE irradiated at a high environmental temperature was more effective than that irradiated at a low environmental temperature in compatibilizing HDPE with PVA. Compared with the 83/17 HDPE/PVA blend, the yield and notched impact strength of the 73/17 HDPE/PVA blend compatibilized with 10% HDPE irradiated for 24 h at an environmental temperature of 70°C increased from 30.8 MPa and 110 J/m to 34.9 MPa and 142 J/m, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2966–2969, 2003  相似文献   

19.
High density polyethylene (HDPE), calcium carbonate (CaCO3), and ethylene vinyl acetate (EVA) ternary reinforced blends were prepared by melt blend technique using a twin screw extruder. The thermal properties of these prepared ternary blends were investigated by differential scanning calorimetry. The effect of EVA loading on the melting temperature (T m) and the crystallization temperature (T C) was evaluated. It was found that the expected heterogeneous nucleating effect of CaCO3 was hindered due to the presence of EVA. The melt viscosities of the ternary reinforced blends were affected by the % loading of CaCO3, EVA, and vinyl acetate content. Viscoelastic analysis showed that there is a reduction of the storage modulus (G′) with increasing of EVA loading as compared to neat HDPE resin or to HDPE/CACO3 blends only. The morphology of the composites was characterized by scanning electron microscopy (SEM). The dispersion and interfacial interaction between CaCO3 with EVA and HDPE matrix were also investigated by SEM. We observed two main types of phase structures; encapsulation of the CaCO3 by EVA and separate dispersion of the phases. Other properties of ternary HDPE/CaCO3/EVA reinforced blends were investigated as well using thermal, rheological, and viscoelastic techniques.  相似文献   

20.
The Izod impact strength of two kinds of ternary composites was investigated. One consisted of polypropylene (PP), the triblock copolymer polystyrene‐block‐poly(ethylene butene)‐block‐polystyrene (SEBS), and calcium carbonate (CaCO3) particles, and the other consisted of PP, carboxylated SEBS (C‐SEBS), and CaCO3 particles. The mean size of the CaCO3 particles was about 160 nm. According to scanning electron microscopy observations, the composite with SEBS showed a morphology in which SEBS domains and CaCO3 particles were independently dispersed in the PP matrix. On the other hand, the composite with C‐SEBS showed a morphology in which CaCO3 particles were encapsulated by C‐SEBS; that is, a core–shell structure was formed. The Izod impact strength of the composite with SEBS was higher than that of the composite with C‐SEBS and the PP/SEBS and PP/C‐SEBS binary blends. According to observations of the fractured surface, the stress‐whitened area was larger in the composite with SEBS than in the composite with C‐SEBS and the PP/SEBS and PP/C‐SEBS binary blends. The toughening mechanism of the composite, using nanometer‐sized CaCO3 particles in combination with SEBS, was examined. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号