首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
采用大气化学模式定量估算2019年4月~9月区域输送对京津冀区域,特别是天津市O3浓度的影响,分析天气形势和气象条件与区域输送的关系。结果显示,京津冀区域13个城市O3以区域输送贡献为主,不同城市O3差异较大,天津本地贡献占比24%,区域输送以京津冀区域其他城市和山东为主,共贡献48.3%。低压、低压前和低压后形势下,O3区域输送占比最高。途径天津偏南区域的气流是造成天津高浓度O3污染的重要因素,也是区域输送的主要路径。随着O3浓度升高,输送贡献占比呈逐步上升趋势,重度污染时本地生成与区域输送贡献相当。一次典型O3污染过程分析表明,高温强辐射天气和有利的天气形势促进O3本地生成,西南气流和弱下沉气流下的区域输送共同维系了这场持续3d的连续污染过程。  相似文献   

2.
日照市作为典型沿海城市,近年来O3污染日益严重,为探究O3污染成因和来源,基于CMAQ模型的IPR过程分析和ISAM源追踪工具分别量化不同物理化学过程,不同源追踪区域对日照市O3的贡献,并对比在O3超标日和非超标日的差异,结合HYSPLIT模式探究日照市O3的区域输送路径.结果表明,以日照市及周边为CMAQ模拟区域,O3超标日与非超标日相比,日照市和连云港市沿海附近O3、 NOx和VOCs浓度明显增加,这主要是由于超标日日照市为西风、西南风和东风的辐合区,易于污染物的输送并累积;过程分析显示,输送过程(TRAN)对日照市和连云港市沿海附近的近地面O3贡献在超标日明显增加,而对临沂以西大部分区域贡献减小.光化学反应(CHEM)在各个高度对日照市白天O3浓度均为正贡献,TRAN在离地0~60 m为正贡献,在60 m以上主要为负贡献,超标日CHEM和TRAN在离地0~60 m...  相似文献   

3.
姜华  常宏咪 《环境科学研究》2021,34(7):1576-1582
为揭示我国近地面臭氧的污染特征,甄别导致高浓度臭氧形成的关键影响因素,该文在探究我国重点区域近年来O3污染特征的基础上,对O3污染成因进行了初步分析.结果表明:①近年来我国O3污染呈缓慢上升态势,2019年夏季异常高温、干旱的极端天气导致O3污染偏重.京津冀及周边地区等重点区域O3浓度明显高于欧美等发达国家和地区.②从时间上看,我国O3污染主要出现在夏季及其前后,O3浓度峰值一般出现在午后.从空间上看,O3污染主要集中在京津冀及周边、汾渭平原和苏皖鲁豫交界地区,其次是长三角和珠三角区域,成渝和长江中游地区O3污染也逐渐凸显.我国O3污染程度主要以轻度污染为主,重点区域O3和PM2.5污染时空分异性特征明显.③前体物方面,我国NOx和人为源VOCs的排放量总体处于高位,京津冀及周边地区和长三角为全国NOx和VOCs排放强度较大的区域.近地表大气O3形成机理复杂,O3浓度与前体物VOCs和NOx均呈复杂的非线性响应关系.气候变化和气象因素对O3污染影响显著,O3及其前体物在区域和城市之间存在相互输送影响.研究显示,我国臭氧污染形势严峻,未来针对臭氧污染防控应加强对多时空尺度下不同区域臭氧污染的形成机理与主导因素的研究.   相似文献   

4.
孙玉环  杨光春 《中国环境科学》2021,40(12):5531-5538
应用三维空气质量模型(Model-3/CMAQ)和积分过程速率(IPR)分析工具对2017年7月22~31日夏季4次台风持续影响下中山市7月首次出现的持续6d的O3污染事件进行了详细分析,识别了O3 8h浓度最大值时段主导的大气物理过程和大气化学过程,并计算了不同源、汇过程对本地O3浓度的贡献.研究结果表明,污染时段化学过程对O3的源贡献高于非污染时段,化学过程贡献增加,说明光化学反应过程更加活跃;台风带来的外来气团经过上风向高污染物排放区域时,化学过程贡献显著上升,与非经过高污染物排放区域相比,污染时段的化学过程对中山市O3源过程的浓度贡献高2.4%~6.5%;污染时段,水平输送对中山市大气O3源过程的浓度贡献在56.6%~92.6%之间.因此,污染期间强化本地排放源的管控,减少O3生成贡献的同时,结合区域气团路径分析,精准识别污染协同管控区域,上风向污染物高排放区域实施协同减排措施,实现区域联防联控.  相似文献   

5.
定量输送过程对大气污染事件的贡献程度一直是目前区域大气污染防控的突出难点和重要需求.对此,基于WRF-Chem模式对佛山典型区域性臭氧(O3)污染事件开展模拟,应用四维通量法分别量化周边区域对佛山市臭氧及其前体物的输送通量,厘清臭氧直接输送和前体物输送的贡献,发现周边区域对佛山市输送的O3总通量平均值为120.3 t·h-1;挥发性有机化合物(VOCs)总通量平均值为30.2 t·h-1;其对应的臭氧生成潜势(OFP)为114.8 t·h-1.通过统计各O3污染事件的输送通量,发现污染期间输入佛山O3通量最大的城市为广州(贡献率为44%);输入VOCs通量最大的城市为肇庆(贡献率为48%).分析输送VOCs排放导致的O3生成潜势发现含氧挥发性有机物(OVOCs)对OFP的贡献最大,在“最大输入事件”中占比为47%.甲醛、二甲苯、醛类、丙酮和苯酚类等OVOCs和芳香烃是对OFP贡献前5的物种,贡献量占总OFP的50...  相似文献   

6.
2019年9月25-29日武夷山市出现了一次持续5 d的O3污染过程,污染持续时间长、强度全省最强,较为罕见。文章利用气象常规与非常规观测资料,结合污染物浓度资料,采用天气聚类分型、后向轨迹(HYSPLIT)、潜在源贡献因子法(PSCF)等方法,阐明了此次污染过程生成、维持和消散的天气学成因。结果表明:该过程武夷山市ρ(O3)小时均值峰值在173~199μg/m3之间,谷值在60~74μg/m3之间,说明此次污染过程区域输送是主要的影响因素之一,且出现轻度污染的天数多于福建省9个设区城市。在23-24日,副热带高压加强,近地层风速减弱,O3污染潜势明显增加;25-27日武夷山市在副热带高压控制下,气温继续升高,加之平均风速从1.6 m/s降到1.3 m/s,大气层结结构稳定,大气水平扩散能力下降,区域输送的贡献增强,导致连续3 d出现O3污染;28-29日在台风“米娜”外围强烈的下沉气流影响下,武夷山市日最高气温继续升高2℃,达到34.1~34.9℃,区域...  相似文献   

7.
本研究结合地面观测资料,ERA5再分析数据和PCT客观分型法,分析了2014~2019年四川盆地区域性O3污染特征以及天气形势与O3污染的关系.结果表明,2014~2019年四川盆地O3区域污染发生频数呈单峰型分布,于2016年达到峰值,且发生区域主要集中在成都平原城市群.在6种典型天气类型中,类型1、2、6为污染型,其海平面气压呈西高东低,四川盆地受低压系统控制.类型3、4为清洁型,其中类型3呈北高南低,且在四川盆地东部存在1个低值中心;类型4呈东高西低,在青藏高原区域有一些小范围的高压中心.在污染型天气形势下,四川盆地的气象条件为温度高、云量低、地面接收到的紫外辐射强、相对湿度低,加速了O3的生成,再叠加类型1的静风条件不利于污染物扩散;类型2、6盛行的东南气流对O3及其前体物的输送,造成污染型天气类型发生区域性O3污染比例明显高于其他几种类型.此外,基于环流分型的预测结果表明环流形势对四川盆地各城市群区域O3污染影响可以达到其年变化的2倍以上,对整个四川盆地O3浓度变化的贡献率为34.8%~66.3%.  相似文献   

8.
2022年10月20-25日,凯里市首次出现持续臭氧污染事件。基于常规污染物监测资料和气象数据,结合ERA5再分析数据研究了此次污染过程中各污染物浓度的变化特征。结果表明,此次臭氧污染呈现明显的区域污染特征。在臭氧污染期间,凯里城区臭氧(O3)平均浓度达123.76±59.76μg m-3,较污染前的O3平均浓度(61.57±29.49μg m-3)大幅上升101.01%;臭氧前体物,包括氮氧化物(NOx)、非甲烷总烃(NMHC)、一氧化碳(CO)在臭氧污染期间的平均浓度与污染前的相比几乎不变;细颗粒物(PM2.5)和可吸入颗粒物(PM10)的平均浓度在臭氧污染期间上涨7.69%和10.26%。另外,风场资料显示,在偏弱的东北风的作用下,凯里市的O3浓度变化明显受到外来输送的影响。本研究探索了凯里市秋季臭氧污染的成因,为开展区域臭氧污染季节臭氧及其前体物的协同控制提供科学支撑。  相似文献   

9.
针对湖南省臭氧(O3)污染加剧但是相关的研究较为缺乏的现状,以长沙市为研究区域,基于观测数据,结合气象校正、基于经验的模型(EOF)和绝对得分受体模型(APCs),识别量化了2018~2020年气象、本地光化学生成和外围传输对O3污染相对贡献的影响,分析了2018~2019年和2019~2020年O3趋势变化的主控因素.结果表明,短期范围内,气象条件是O3污染事件发生的重要诱发因素.对长沙市整体来说,在时间上,2018~2019年期间,气象和本地前体物排放影响作用的增强是O3浓度升高的关键驱动因子.2019~2020年期间,气象、本地前体物排放和外围传输影响均呈现下降的趋势,是导致O3浓度降低的重要影响因素.空间上,2018~2020年时间段,气象、本地前体物排放和外围传输主要影响区域分别为长沙市偏东、偏北和偏南部区域.其中,外围传输的作用持续减弱,2018~2019年期间,长沙市北部天然源排放水平的升高使得O3浓度上升,南部区域NO...  相似文献   

10.
采用重心模型、空间自相关分析和地理探测器,研究了2016年中国东部O3浓度的时空变化规律,揭示了气象因素和前体物对中国东部O3浓度空间分布格局及其演变的影响.结果表明:(1)O3浓度变化可分为3个阶段:1~3月为低值上升阶段、4~9月为高值波动阶段、10~12月为低值下降阶段,O3污染主要发生在高值波动阶段,超标天数占全年的96.0%.(2)气象因素是影响O3年均浓度空间分布格局的主导因素,受降水、相对湿度南高北低和日照时数北高南低的影响,O3年均浓度总体呈北高南低的态势;前体物对O3年均浓度分布也有显著影响,是城市群核心城市形成局部O3污染中心的原因.(3)O3月均浓度分布格局经历了由北高南低到南高北低的演变过程,1~6月O3浓度总体重心和高值重心向北迁移,6月达到最北,北高南低的特征最强,环渤海地区成为O3污染最严重的区域;7~12月,O3浓度总体重心和高值重心向南迁移,12月达到最南,O3浓度分布格局演变为南高北低.3~9月雨季期间,O3浓度分布主要受降水和相对湿度的影响,其余时间主要受气温的影响.(4)前体物对O3浓度分布的影响主要通过气象条件实现,气温越高,光化学反应越强,前体物的正向影响力越大;气温越低,光化学反应越弱,NOx、CO、SO2等化学性质活跃的前体物对O3可能起消耗作用.  相似文献   

11.
利用2017~2019年中国生态环境监测总站逐小时地面臭氧(O3)和二氧化氮(NO2)数据, 结合再分析气象数据集,分析了从汾渭平原至黄土高原三个不同海拔高度的典型城市郊区(西安:500m、榆林:1100m和鄂尔多斯:1300m)O3浓度的季-月-日变化特征,以及导致三地O3浓度差异可能的化学和气象成因.结果表明:与其他季节比较,夏季三地的O3浓度都较高且差值较小,其中西安昼间O3的净增量最大、夜间净减量也最大且前体物NO2浓度最高,说明西安夏季白天O3光化学反应最强烈、夜间NO滴定O3效应也最强,榆林其次、鄂尔多斯最弱;冬季三地的O3浓度都较低且差异较大,其中西安最低、鄂尔多斯最高,可能是由于冬季白天光化学反应都弱、夜间NO滴定O3效应差异和高海拔地区背景O3浓度高共同导致的,反映了三地O3浓度水平差异不仅受不同NOx水平下局地化学作用影响,还由区域背景值决定.分析还发现,高海拔的鄂尔多斯和榆林二地O3浓度在上午升高的速率快于西安,与二地边界层向上发展的速率一致,可能是由于此时的夹卷效应将高海拔自由对流层的高背景O3向下湍流输送所致.在每个季节雨天夜间,三地的O3浓度均高于其阴、晴天,但是这一差异在西安较弱,而在榆林和鄂尔多斯较强,这进一步意指高海拔地区近地面O3在雨天夜间更强烈地受到高浓度背景O3的影响,一方面是通过降水的拖曳作用,另一方面是因为雨天夜间NO的滴定作用减弱.本研究通过长期观测资料分析,推测了不同海拔高度对近地面O3的影响机制,还需在更多地区进行分析和利用模式开展验证.  相似文献   

12.
采用来源解析的方法对2020年成都市发生的一次较为严重的臭氧污染事件进行了研究.结果表明,此次污染过程呈现从清洁-污染-清洁的变化趋势,污染持续时间长达9d,最大臭氧小时浓度达到258.8μg/m3.气象因素在成都臭氧污染中的影响不可忽略,其中温度与臭氧浓度呈现显著正相关关系,东北风主要出现在污染前和污染后,可能起到稀...  相似文献   

13.
基于山西省2018—2020年国控点位O3监测数据分析了全省O3污染特征,分别以晋城市和太原市为典型城市,分析了温度、相对湿度和风向风速等气象因子以及前体物(NOx和VOCs)对O3的影响,并采用CAMx模式开展2020年6—8月山西省O3区域和行业来源解析. 结果表明:① 山西省O3超标天数中以O3轻度污染为主,且中度及以上污染呈增加趋势,O3污染集中出现在5—9月,且呈现较强的地域性特征,O3浓度日变化呈单峰型特征. ② ρ(O3-1 h)(臭氧1 h平均浓度)与气温、风速均呈正相关,与相对湿度呈负相关,高温、低湿有利于O3的生成. 风速与ρ(O3-1 h)呈分段式线性关系,ρ(O3-1 h)随着风速增大而升高,当风速大于某一阈值时,ρ(O3-1 h)随风速的增加而下降. 以典型城市晋城市为例,当温度在25 ℃以上、相对湿度在30%~60%之间、风速为4~5 m/s,且风向为南风和东南风时更容易出现ρ(O3-1 h)高值. ③ 山西省2020年6—8月O3区域来源解析表明,各城市O3本地源贡献较弱而传输贡献影响显著(>80%). ④ 山西省2020年6—8月O3行业来源解析表明,各市工业源类(电力源、焦化源和其他工业源)的贡献率在50%左右,柴油交通源贡献率在20%~27%之间. 研究显示,山西省O3污染传输贡献影响显著,联防联控势在必行,电力源、焦化源和柴油交通源对O3生成贡献较大,亟需优先加强管控.   相似文献   

14.
为认识淄博市近年来大气臭氧(O3)时空分布特征,基于山东省淄博市19个环境空气质量监测点2016-2019年近地面O3的连续观测数据,运用Pearson相关性分析法、反距离权重法等方法开展研究.结果表明:①淄博市2016-2019年ρ(O3-8 h)(O3-8 h为O3日最大8 h浓度)第90百分位数范围为184~203 μg/m3,是GB 3095-2012《环境空气质量标准》二级标准限值(160 μg/m3)的1.15~1.27倍.②ρ(O3-8 h)季节性变化呈夏季(155 μg/m3)>春季(129 μg/m3)>秋季(104 μg/m3)>冬季(60 μg/m3)的特征;ρ(O3-8 h)月变化呈双峰型,峰值分别出现在6月(186 μg/m3)和9月(147 μg/m3);ρ(O3-8 h)日变化呈单峰型,峰值(117 μg/m3)出现在14:00左右.③ρ(O3-8 h)空间分布呈南北低、中间高的特点,并具有区域均匀性发展趋势.④CO、NO、NO2和NOx等前体物浓度均与ρ(O3-8 h)呈负相关,但在夏季相关性较差;冬季夜晚局地污染物对Ox的贡献大于白天.⑤ρ(O3-8 h)与温度和风速均呈显著正相关,与相对湿度呈显著负相关,当风向为西南风时ρ(O3-8 h)较高.研究显示,淄博市O3表现为典型的光化学生成特征,2016-2019年O3污染总体呈加重趋势.   相似文献   

15.
为了解北京市夏季臭氧(O3)污染的特征与来源,采用区域空气质量模型(CMAQ)的综合源解析功能(ISAM)对北京市2019年6月不同区域的近地面O3浓度及其来源贡献进行了数值模拟计算,量化了北京市、天津市、河北省、京津冀以外省份以及全球背景共14类NOx和VOCs排放源对北京市不同区域O3污染的贡献. 结果表明:①北京市不同地区O3及其前体物来源存在显著差异,城区及近郊区NOx和VOCs均主要来自于北京市本地排放,本地源排放对城区及近郊区的NOx贡献(39.7%~46.4%)显著大于对远郊区的贡献(19.9%~38.8%),本地源排放对城区及近郊区的VOCs贡献(51.1%~75.8%)大于对远郊区的贡献(19.5%~39.6%). ②远郊区NOx和VOCs浓度更易受非本地排放的输送影响. ③O3主要来源于包括模拟区域外以及全球背景的边界传输贡献,边界传输对北京市不同受体区域的贡献均大于52.6%. ④北京市本地源排放对城区及近郊区O3的贡献(6.8%~18.3%)大于对远郊区的贡献(2.4%~7.6%),京津冀以外源区的排放对北京市远郊区的贡献(5.2%~6.4%)大于对城区及近郊区的贡献(2.7%~4.4%),说明本地排放对远郊区影响相对较小,远郊区O3浓度易受北部燕山山脉和太行山的阻隔影响. 因地理位置及地形原因,河北省不同源区对北京市不同区域O3浓度的贡献存在一定差异. 研究显示,控制北京市夏季O3污染应综合考虑城区与郊区O3来源的差异性,做好周边区域的联防联控.   相似文献   

16.
Meteorological factors have an important influence on ozone (O3) concentration. In order to explore the characteristics and causes of near-surface O3 pollution in Henan Province, based on the datasets of ambient air quality monitoring stations and national basic ground climate stations in Henan Province from 2014 to 2020, this study examined the spatiotemporal characteristics of O3 pollution in Henan Province and the relationship between O3 and precursors and meteorological factors, and the potential sources of O3 in Henan Province were also explored. The results showed that: (1) In terms of temporal characteristics, the annual average O3 concentration of the maximum daily 8 h average (O3-8 h) in Henan Province generally decreased from 2014 to 2020, showing an ‘M’ type temporal evolution. For seasonality of O3-8 h concentration, it was highest in summer and decreased sequentially in spring, autumn, and winter, while both O3-8 h concentration and the number of days exceeding the standard peaked in June. In terms of spatial characteristics, the O3 concentration was generally lower in northern than in southern China, and lower in western than in eastern China. The areas with high concentrations were concentrated in southern Henan Province. (2) The O3-8 h concentration was significantly negatively correlated with the precursor NO2 and CO concentrations. (3) From the perspective of meteorological factors, O3-8 h concentration was positively correlated with air temperature and negatively correlated with relative humidity, indicating that high temperature (≥26 ℃) and low humidity (≤40%) were favorable for the increasing of O3-8 h concentration. Affected by the prevailing northerly winds in autumn and winter, the O3-8 h concentration in Henan Province showed a spatial pattern of low values in the north and high values in the south in autumn and winter, and the prevailing southerly wind in summer was conducive to the formation and maintenance of O3 in Henan Province. (4) In the summer of 2019, the main source areas of O3 and precursors increased gradually and changed from both inside and outside the province to mainly outside the province. Affected by the boundary cities and topographic conditions, O3 in Henan Province accumulated locally in summer. The study shows that the near-surface O3 pollution in Henan Province has significant spatial and temporal distribution characteristics, the pollution degree is generally reduced. The precursors of O3 and meteorological factors (temperature, relative humidity, wind) have significant effects on O3, and O3 transport paths and potential sources change with time in summer.   相似文献   

17.
采用WRF-Chem模式中的3种边界层方案YSU、MYJ和ACM2对2019年6月京津冀及周边地区典型O3污染月份开展模拟研究.详细对比了各方案对地面气象要素、NO2和O3浓度时空分布,以及温湿风要素和O3浓度垂直分布的模拟效果.结果表明:3种方案对地面气象要素的时空分布和温湿风要素的垂直变化模拟较为合理.MYJ方案模拟地面气象要素整体效果最佳.各方案对边界层高度的日变化特征模拟较好,相关系数为0.58~0.69,但存在白天偏高、夜间偏低的现象,YSU方案相比效果最佳.3种边界层方案对NO2浓度模拟普遍高估,而O3模拟结果则出现低估.白天模拟偏差较小而夜间偏差较显著.模拟最佳的是ACM2,其次为YSU和MYJ.3种方案均较好地模拟出了O3的垂直分布特征,但整体低估了O3浓度.对上午O3垂直分布的模拟差异较下午更为明显.此外,基于YSU方案设置了3个敏感实验,通过调整化学模块所用的湍流扩散系数阈值,对比分析了垂直混合过程改变对O3浓度模拟的影响,模拟的变化只反映由于边界层的垂直混合过程改变造成的污染差异,而不是由于热动力场的调整造成的变化.模拟结果表明3个方案均可改善区域上地面NO2和O3的模拟性能,尤其是对原3种边界层方案模拟O3均明显低估的华北平原地区提升效果最显著,平均偏差降低了23.7%.在垂直方向上,湍流扩散系数阈值的调整增加了早间近地面模拟的O3浓度,改善了模拟偏低的现象,但同时增大了高层O3浓度的负偏差.敏感性方案显著改善了夜间的模拟,白天则并不明显.这些结果显示出湍流扩散系数对O3垂直混合的重要影响.因此,改进湍流扩散系数的参数化对O3模拟是必要的.  相似文献   

18.
杭州湾北岸上海段石化集中区臭氧重污染过程研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究杭州湾O3污染的形成机制,采用在线监测系统对杭州湾北岸上海段石化集中区O3及其前体物开展了为期1个月(2019年5月)的同步连续观测.采用OZIPR(臭氧等值线研究)模型分析O3生成的敏感性.在O3重度污染期间,利用PMF(正定矩阵因子分解)模型对O3前体物——VOCs进行源解析,采用臭氧生成潜势及气团老化分别估算了VOCs的反应活性和化学消耗.结果表明:①2019年5月杭州湾北岸上海段石化集中区O3的IAQI(空气质量分指数)优良率仅为61.3%,ρ(O3)第90%分位值为173.0 μg/m3.5月22日、23日发生重度O3污染,O3日最大8 h滑动平均值分别为(284.4±19.2)(282.0±14.2)μg/m3,分别超过GB 3095—2012《环境空气质量标准》二级标准限值(160 μg/m3)的77.75%和76.25%.②O3的生成受VOCs控制,降低VOCs的排放可在一定程度上降低O3的生成,降低NOx的排放反而会促进O3的生成.③O3重度污染期间,VOCs主要来自化工区排放(72.35%)和机动车尾气排放(27.65%).④O3重度污染期间,烯烃、炔烃及芳香烃对O3生成的贡献率之和在80.00%以上,其中丙烯、乙烯和甲苯的贡献率分别为29.97%、15.60%和14.16%;芳香烃及烯烃和炔烃是最主要的VOCs化学消耗物种,其中φ(丙烯)、φ(乙烯)和φ(1,2,4-三甲苯)的消耗量分别为13.57×10-9、4.93×10-9和3.55×10-9.研究显示,杭州湾北岸上海段5月O3的生成受化工区影响显著,丙烯与乙烯是O3重污染期间关键的O3前体物.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号