首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
将酵母菌作为微生物发泡剂引入到聚乙烯醇(PVA)/羟乙基纤维素(HEC)复合材料中,结合循环冷冻-解冻法制备PVA/HEC多孔复合材料。测试不同实验条件PVA/HEC多孔复合材料的孔隙率、吸水性、保水性。通过FTIR和SEM表征样品的微观结构;采用热重分析仪(TG)、X射线衍射(XRD)仪、万能拉力试验机分析样品热稳定性、结晶性、力学性能。结果表明:酵母菌发泡PVA/HEC多孔复合材料孔呈大孔套小孔的椭圆状开孔结构,吸水响应速率快。保水性良好,24h后保水率降至最低。与未经酵母菌发泡的PVA/HEC复合材料相比,酵母菌发泡PVA/HEC多孔复合材料热稳定性和力学性能均有所提高,压缩强度和极限抗压应力分别是13.2、6.4MPa。  相似文献   

2.
将酵母菌作为微生物发泡剂引入到聚乙烯醇(PVA)/羟乙基纤维素(HEC)复合材料中,结合循环冷冻-解冻法制备PVA/HEC多孔复合材料。测试了不同实验条件下PVA/HEC多孔复合材料的孔隙率、吸水性、保水性。通过FTIR和SEM表征样品的微观结构;采用热重分析仪(TG)、X射线衍射仪(XRD)、万能拉力试验机分析样品热稳定性、结晶性、力学性能。结果表明:酵母菌发泡PVA/HEC多孔复合材料孔呈大孔套小孔的椭圆状开孔结构,具有快速吸水响应性;保水性良好,24 h后保水率降至最低;与PVA/HEC复合材料相比,PVA/HEC多孔复合材料热稳定性和力学性能均有所提高,压缩强度和极限抗压应力分别是13.2、6.4 MPa。  相似文献   

3.
The viability of vinyltrimethoxy silane was investigated as a coupling agent for the manufacture of wood–plastic composites (WPC). The effect of silane pretreatment of the wood flour on the thermal and the dynamic mechanical properties and thermal degradation properties of the composites were studied. Moreover, the effect of organosilane on the properties of composites was compared with the effect of maleated polypropylene (MAPP). DSC studies indicated that the wood flour acts as a PP-nucleating agent, increasing the PP crystallization rate. In general, pretreatment with small amounts of silane improved this behavior in all the WPCs studied. Thermal degradation studies of the WPCs indicated that the presence of wood flour delayed degradation of the PP. Silane pretreatment of the wood flour augmented this effect, though without significantly affecting cellulose degradation. Studies of dynamic mechanical properties revealed that the wood flour (at up to 30 wt %) increased storage modulus values with respect to those of pure PP; in WPCs with a higher wood flour amount, there was no additional increase in storage modulus. Pretreatment of the wood flour with silane basically had no effect on the dynamic mechanical properties of the WPC. These results show that with small amounts of vinyltrimethoxy silane similar properties to the MAPP are reached. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Abstract

Wood flour reinforced high density polyethylene (HDPE) composites have been prepared and their rheological properties measured. The melt viscosity decreased as the processing temperature increased and the wood flour content decreased. A power law model was used to describe the pseudoplasticity of these melts. Adding wood flour to HDPE produced an increase in tensile strength and modulus. Composites compounded in a twin screw extruder and treated with a coupling agent (vinyltrimethoxysilane) or a compatibliser (HDPE grafted with maleic anhydride) exhibited better mechanical properties than the corresponding unmodified composites because of improved dispersion and good adhesion between the wood fibre and the polyalkene matrix. Scanning electron microscopy of the fracture surfaces of these composites showed that both the coupling agent and compatibiliser gave superior interfacial strength between the wood fibre and the polyalkene matrix.  相似文献   

5.
以羟乙基纤维素(HEC)与环氧大豆油(ESO)为原料,四氯化锡(Sn Cl4)为催化剂,二甲亚砜(DMSO)为溶剂,在室温下反应制备了羟乙基纤维素接枝环氧大豆油(ESO-HEC);ESO-HEC经碱性水解后,用酸处理得到羟乙基纤维素接枝环氧大豆油水解的酸性产物(H-ESO-HEC);再通过Na OH中和H-ESO-HEC结构中的羧酸基团,得到3种HESO-HEC-Na高分子表面活性剂。通过FT-IR表征了3种表面活性剂酸性产物H-ESO-HEC的结构;热重测试表明H-ESO-HEC比HEC具有更好的热稳定性;动态表面张力测试表明当H-ESO-HEC-Na的质量浓度升高,动态表面张力下降,且质量浓度达到临界胶束浓度时,最小表面张力值可达29 m N/m;泡沫性能测试表明随着ESO接枝量的增多,H-ESO-HEC-Na高分子表面活性剂的起泡和稳泡能力逐渐增强;通过对H-ESO-HEC-Na水溶液/庚烷的界面张力进行测试,发现不同条件制备得到的H-ESO-HEC-Na水溶液/庚烷的最低界面张力值接近,为9.8 m N/m左右。  相似文献   

6.
In this work, a series of novel hydroxyethyl cellulose‐ g‐poly(acrylic acid)/attapulgite (HEC‐g‐PAA/APT) superabsorbent composites were prepared through the graft polymerization of hydroxyethyl cellulose (HEC), partially neutralized acrylic acid (AA), and attapulgite (APT) in aqueous solution, and the composites were characterized by means of Fourier‐transform spectroscopy, scanning electron microscopy, and transmission electronmicroscopy. The effects of polymerization variables including concentrations of the initiator and crosslinker and APT content on water absorbency were studied, and the swelling properties in various pH solutions as well as the swelling kinetics in various saline solutions were also systematically evaluated. Results showed that the introduction of 5 wt% APT into HEC‐g‐PAA polymeric network could improve both water absorbency and water absorption rate of the superabsorbent composites. In addition, the superabsorbent composites retained high water absorbency over a wide pH range of 4–10, and the swelling kinetics of the superabsorbent composites in CaCl2 and FeCl3 solutions exhibited a remarkable overshooting phenomenon. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

7.
邵自强  李博  门爽 《应用化工》2006,35(7):487-490,493
为改进羟乙基纤维素的溶液性能,通过羟乙基纤维素与长链溴代烷烃的大分子反应,制得疏水缔合羟乙基纤维素(BD-HAHEC);经由正交实验确定最优化工艺参数为:醚化剂∶羟乙基纤维素(质量比)=3∶10,活化剂浓度为4%,在80℃条件下反应5 h。用傅立叶红外光谱仪、粘度计和剪切流变仪对产品进行结构表征和性能测定,结果表明,与普通羟乙基纤维素相比,疏水改性羟乙基纤维素水溶液在增稠性、耐温耐盐性、抗剪切性等性能上均有明显提高;在相同反应条件下,由溴代十四烷改性的羟乙基纤维素具有比溴代十二烷改性更强的增稠性能。  相似文献   

8.
The mechanical performance of different wood flour/polypropylene (PP) composites with interface modifications was compared. Wood flour was incorporated into the matrix after esterification with maleic anhydride (MAN) or without any modification but with the addition of a compatibilizing agent [maleic anhydride–polypropylene copolymer (PPMAN)] to modify the polymer–filler interaction. Composites were prepared by injection molding with different concentrations of wood flour. Mechanical properties (except Young's modulus) were not improved either by the wood flour chemical modification or by the use of PPMAN. However, both compatibilization methods were successful in improving the dispersion of the wood flour in the PP matrix. Creep behavior of composite samples was improved by the addition of PPMAN, whereas the composites prepared from MAN‐treated wood flour showed larger deformations than composites made with untreated particles. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1420–1428, 2003  相似文献   

9.
处理剂对木塑产品性能的影响   总被引:6,自引:0,他引:6  
研究了不同表面处理剂处理木粉对木塑复合材料流变性能和力学性能的影响。结果表明,硬脂酸、白油、钛酸酯偶联剂和超分散剂都能改善木粉与聚乙烯(PE)树脂的相容性,提高木塑材料的加工性能,用超分散剂处理的木塑材料的加工性能最好,钛酸酯偶联剂次之,硬脂酸加白油最差;钛酸酯偶联剂、超分散剂处理的木塑材料的物理力学性能比硬脂酸加白油处理的略好,只有冲击强度略有降低。  相似文献   

10.
硅烷偶联剂对HDPE/木粉复合材料性能的影响   总被引:7,自引:0,他引:7  
使用经硅烷偶联剂HP-172和HP-174改性的木粉制备了HDPE/木粉复合材料,研究了偶联剂用量对其性能的影响。实验结果表明:当使用1.5%的HP-172处理木粉后,可使复合材料的各项力学性能提高30%以上;HP-174的用量为1%~1.5%也得到了较好的改性效果。通过FIR和SEM分析发现,硅烷偶联剂可与木粉表面发生化学反应,从而提高了HDPE与木粉的界面粘合强度,使复合材料的力学性能得以提高  相似文献   

11.
Biodegradable and biocompatible composites based on soy protein isolate (SPI) and various cellulose derivatives have been prepared, and the dependence of structures and mechanical properties on the content and species of cellulose derivatives for the composites were investigated by X‐ray diffraction, differential scanning calorimetry, scanning electron microscope, and tensile test. The selected cellulose derivatives, such as methyl cellulose (MC), hydroxyethyl cellulose (HEC), and hydroxypropyl cellulose, were miscible with SPI when the content of cellulose derivatives was low, and then the isolated crystalline domains, shown as the structures of network and great aggregate, formed with an increase of cellulose derivative content. The miscible blends could produce the higher strength, and even result in the simultaneous enhancement of strength and elongation for the HEC/SPI and MC/SPI blends. Meanwhile, the moderate content of great MC domains also reinforced the materials. However, the damage of original ordered structure in SPI gave the decreased modulus. Since all the components, i.e., cellulose derivatives and soy protein, are biocompatible, the resultant composites are not only used as environment‐friendly material, but the biomedical application can be expected, especially for the tissue engineering scaffold. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
表面处理对木粉增强PVC发泡复合板材性能的影响   总被引:9,自引:0,他引:9  
研究表面处理的木粉对发泡聚氯乙烯(PVC)板材的增强改性效果。使用铝酸酯偶联剂、丙烯酸丁酯预聚物对木粉进行表面处理,将其混合到聚氯乙烯发泡板材配料中进行板材加工生产,结果表明,经处理的木粉能提高发泡PVC板材的拉伸强度和冲击强度。用铝酸酯偶联剂处理木粉的发泡板材力学性能好于用丙烯酸丁酯预聚物处理的板材;而用丙烯酸丁酯预聚物处理木粉的复合材料在流变加工性能优于用铝酸酯处理木粉的复合材料。  相似文献   

13.
将水溶性的纤维素衍生物——羟乙基纤维素与壳聚糖乙酸水溶液用溶液浇铸法制得羟乙基纤维素/壳聚糖(HEC/CS)共混膜。确定了该共混膜的最佳制备条件,并测试了其力学性能和生物降解性能。结果表明:HEC/CS共混膜具有好的抗菌性。  相似文献   

14.
HEC influence on cement hydration measured by conductometry   总被引:2,自引:0,他引:2  
Cellulose ethers are of universal use in factory-made mortars, though their influences on mortar properties at a molecular scale are poorly understood. Recent studies dealt with the influence of hydroxyethylmethyl cellulose (HEMC) and hydroxypropylmethyl cellulose (HPMC) molecular parameters on cement hydration. It was concluded that the degree of substitution is the most relevant factor on cement hydration kinetics, contrary to the molecular weight. Nevertheless, the major role played by the substitution degree has not been verified for other types of cellulose ethers such as hydroxyethyl cellulose (HEC), which generally possesses a higher hydration retarding capacity compared to HPMC and HEMC. In this frame, a study of the impact of HEC molecular parameters on cement hydration was performed. A negligible influence of the molecular weight was observed. Moreover, the results emphasize that the hydroxyethyl group content mainly determines the delay of cement hydration.  相似文献   

15.
Copper amine–treated wood flour was added to PVC [poly(vinyl chloride)] matrix in order to manufacture PVC/wood‐flour composites. Effects of copper treatments on the mechanical properties of PVC‐wood composites were evaluated. Unnotched impact strength, flexural strength, and flexural toughness of the composites were significantly improved by the wood‐flour copper treatment. The optimum copper concentration range was 0.2 to 0.6 wt% of wood flour. Fractured surfaces were examined by using scanning electron microscopy (SEM) combined with energy‐dispersive spectroscopy (EDS). PVC/wood interfacial debonding was the main fracture mode of untreated wood‐flour composites, whereas wood‐particle pullout and breakage dominating the fractured surfaces of copper‐treated wood‐flour composites. On the fractured surfaces, more PVC could be found on the exposed copper‐treated wood particles than on untreated wood, a result suggesting improved PVC‐wood interfacial adhesion after copper treatments. J. Vinyl Addit. Technol. 10:70–78, 2004. © 2004 Society of Plastics Engineers.  相似文献   

16.
Effects of wood flour species and polyethylene grafted with maleic anhydride (MA‐PE) on mechanical properties and morphology and torque rheology of high density polyethylene (HDPE)/wood flour composites have been comparatively investigated. The results demonstrated that without compatbilizer, wood flour species exhibited little influence on mechanical properties. In the presence of MA‐PE, the mechanical properties were obviously increased. On the basis of the mechanical property data obtained from wood flour extracted by different methods, the extractant was an important factor affecting the mechanical properties. Manchurian ash and larch wood flours extracted by hot water presented almost the same mechanical properties, and larch wood flour was the most beneficial to enhance the mechanical properties. The scanning electron microscopy (SEM) and the atomic force microscopy (AFM) further confirmed that interfacial adhesion and dispersion of manchurian ash wood flour in composites were effectively improved by MA‐PE. The torque results demonstrated that the chemical reactions of maleic anhydride groups on MA‐PE with hydroxyl on cellulose in wood flour probably took place due to the increase of the equilibrium torque and the appearance of the torque peak, and larch wood flour was more beneficial to prepare the composites containing the higher wood flour content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Potassium methyl siliconate (PMS) was investigated as a new nano modifier of wood fiber and wood flour to improve the compatibility between the fiber/flour and the plastic matrix in fiber reinforced plastic composites. Before injection molding, bleached and brown pulp fibers and mixed species wood flour were pretreated in PMS solutions. The morphology of the treated and untreated fiber and flour, the compatibility of PMS‐treated fiber and flour with polyethylene (PE), and the water sorption and volumetric swell of PMS‐treated fiber/flour plastic composites in a long‐term soaking test were evaluated. Fiber and flour treated with PMS increased the compatibility between the fiber/flour and the PE matrix. The increased compatibility of PMS‐treated fiber and flour with the matrix contributed to the reduction of water sorption and, thus, increased dimensional stability. For all composites, water sorption and volumetric swell of fiber/four plastic composites decreased as the ratio of fiber to flour increased. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
以木粉和聚己二酸/对苯二甲酸丁二酯(PBAT)为原料,添加硅烷偶联剂,混合均匀后,在开炼机中混炼一定时间制备PBAT/木粉复合材料,从偶联剂种类及其用量、加工温度、加工时间4个方面探讨了制备PBAT/木粉复合材料的最佳工艺条件。研究结果表明,加入的硅烷偶联剂KH–560用量为木粉和PBAT总质量的2%,与木粉和PBAT在130℃下混炼10 min,制备出的PBAT/木粉复合材料的相容性较好,且复合材料的拉伸性能达到最优,拉伸强度和断裂伸长率分别达到12.42 MPa和56.58%。SEM分析表明,添加KH–560后,PBAT/木粉的相容性得到了明显改善,耐水性更好,吸水率从13.04%下降到10.39%,制备出的PBAT/木粉复合材料的耐热性能较原料木粉也得到了较大的提高,在395℃时仅分解40%。  相似文献   

19.
采用大分子反应法,将疏水性单体l-溴代十二烷(BD)接枝到羟乙基纤维素(HEC)上,对羟乙基纤维素进行疏水改性,制备了疏水改性羟乙基纤维素(HMHEC)。研究了离子液体种类、反应温度、羟乙基纤维素浓度和BD用量对HMHEC性能的影响。最佳合成条件为:HEC浓度为3%(质量分数),溶解时间1 h,溶解温度100℃,反应时间2 h,反应温度80℃,BD用量为2 mL。在1-烯丙基-2-甲基-咪唑氯盐体系中合成的HMHEC性能好于在1-丁基-2-甲基咪唑氯盐中合成的HMHEC。  相似文献   

20.
Composites of polylactide (PLA, 100–60 wt%) and wood flour (0–40 wt%) were prepared to assess the effects of wood filler content on the mechanical, chemical, thermal, and morphological properties of the composites. The polysaccharide chitosan (0–10 wt%) was added as a potential coupling agent for the PLA‐wood flour composites. Addition of wood flour significantly increased the flexural modulus and the storage modulus of PLA‐wood flour composite, but neither the wood flour nor chitosan had an effect on the glass transition temperature (Tg). Fourier transform infrared spectra did not show any evidence of covalent bonding, but chitosan at the interface between wood and PLA is thought to have formed hydrogen bonds to PLA‐carbonyl groups. SEM images of fracture surfaces showed that fiber breakage was far more common than fiber pullout in the composites. No evidence of discrete chitosan domains was seen in SEM micrographs. When added at up to 10 wt% (based on wood flour mass), chitosan showed no significant effect on the mechanical, chemical, or thermal properties of the composites, with property changes depending on wood flour content only. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号