首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
以1,3,3-三甲基-1-苯基茚满为原料,通过硝化、还原反应制备5(6)-氨基-1-(4-氨基苯基)-1,3,3-三甲基茚满(PI-DA),其结构经FTIR、1H-NMR和LC-MS表征。以PIDA为固化剂,用DSC研究了E-44/PIDA固化反应,确定固化工艺条件,并用Kissinger及Ozawa方法分别计算得到该体系固化反应的表观活化能为56.48kJ/mol和60.76kJ/mol,结合Crane公式求出反应级数为0.88。研究结果表明,与4,4’-二氨基-二苯砜(DDS)相比,PIDA熔点较低且带有环状茚满结构,既降低了固化温度、缩短了固化时间,又提高了复合材料的耐热性。E-44/PIDA复合材料的玻璃化转变温度Tg=167.8℃,初始分解温度Td=361.71℃。  相似文献   

2.
为了提高环氧树脂的耐热性,采用笼型倍半硅氧烷(POSS)改性双酚A型环氧树脂E51,得到有机无机杂化树脂。采用Ozawa和Kissinger两种方法研究了杂化树脂/4,4′-二氨基苯砜(DDS)体系的固化反应动力学。TGA分析表明,POSS的加入提高了E51/DDS固化树脂体系的热性能。  相似文献   

3.
环氧树脂/液晶固化剂固化反应动力学研究   总被引:5,自引:1,他引:5  
通过差热分析 (DSC)研究了非等温过程环氧树脂 /液晶固化剂体系的固化反应动力学 ,研究了不同配比对固化反应的影响 ,固化反应转化率与固化温度的关系 ,计算了固化反应的活化能 ,确定了环氧树脂 /液晶固化剂的固化工艺条件 ,用偏光显微镜观察了环氧树脂 /液晶固化剂 / 4 ,4′ -二氨基二苯砜 (DDS)体系在不同温度下固化时的形态。结果表明 :液晶固化剂的加入量越大 ,固化反应速度越快 ;环氧树脂 /液晶固化剂体系固化反应的活化能为 71 5kJ/mol;偏光显微镜观察表明 :随着固化起始温度的增加 ,固化体系的形态由原来的具有各向异性的丝状结构变化为各向同性 ,液晶丝状条纹消失。  相似文献   

4.
采用非等温DSC对胺丙基低聚倍半硅氧烷(NH2-POSS)/环氧树脂(E51)/4,4-二氨基二苯砜(DDS)体系的固化过程进行研究。利用外推法确定体系的固化工艺条件,通过Kissinger和Ozawa方程计算体系的活化能,研究了n级和自催化模型对体系的适用性。结果表明,NH2-POSS/E51/DDS体系的活化能为68.01kJ/mol,且自催化动力学模型适用于固化体系。  相似文献   

5.
新型双马来酰亚胺改性环氧树脂体系性能研究   总被引:1,自引:0,他引:1  
用含二氮杂萘联苯结构的双马来酰亚胺(DHPZ-BM I)与4,4'-二氨基二苯砜(DDS)为复合固化剂固化环氧树脂(E-51)。采用示差扫描量热仪(DSC)研究了该体系的固化反应动力学,求得固化反应表观活化能Ea=63.28 kJ/mol,碰撞因子A=1.55×106s-1,反应级数n=0.89,该体系与链延长型双马来酰亚胺PPEK-BM I(DP=15)/DDS/E-51体系的固化反应动力学数据几乎相同,证明二者的固化反应过程相同。采用热失重分析仪(TGA)分析研究了上述2种固化体系的热分解动力学,前者的热分解活化能达215.04 kJ/mol,为后者的1.5倍以上,说明DHPZ-BM I/DDS/E-51是1种热稳定性能良好的耐高温环氧树脂体系。  相似文献   

6.
分别以4,4‘-二氨基二苯甲烷(DDM)和4,4‘-二氨基二苯砜(DDS)为固化剂,采用非等温差示扫描量热法(DSC)研究了E-44和E-51两种双酚A型环氧树脂的固化反应动力学。收集与分析了在25~350℃范围内分别以5、10、15、20℃/min的升温速率进行固化的反应参数,然后采用Starink法计算得到不同环氧固化体系的表观活化能。同时,借助各固化体系的动态流变性能,分析了双酚A型环氧树脂/芳香胺固化体系的固化反应机理,并选用双参数自催化模型计算了各固化体系的反应速率方程。研究结果表明:当环氧固化体系的固化剂不同时,采用DDM作为固化剂的环氧固化体系(E-44/DDM、E-51/DDM),其表观活化能均低于添加DDS固化剂的环氧体系;选用同种固化剂(DDM或DDS)时,E-51树脂体系的表观活化能均低于E-44树脂固化体系。反应速率方程结果显示,该双参数自催化模型与实际试验结果的吻合性良好,可用于描述双酚A型环氧树脂/芳香胺固化体系的固化历程。  相似文献   

7.
通过差热分析(DSC)研究了非等温过程环氧树脂/液晶固化剂体系的固化反应动力学,研究了不同配比对固化反应的影响,固化反应转化率与固化温度的关系,计算了固化反应的活化能,确定了环氧树脂/液晶固化剂的固化工艺条件,用偏光显微镜观察了环氧树脂/液晶固化剂/4,4-二氨基二苯砜(DDS)体系在不同温度下固化时的形态。结果表明:液晶固化剂的加入量越大,固化反应速度越快;环氧树脂/液晶固化剂体系固化反应的活化能力为71.5kJ/mol,偏光显微镜观察表明:随着固化起始温度的增加,固化体系的形态由原来的具有各向异性的丝状结构变化为各向同性,液晶丝状条纹消失。  相似文献   

8.
以1,2-二氢-2-(4-氨基苯基)-4-[4-(4-氨基苯氧基)-苯基]-二氮杂萘-1-酮(DHPZ-DA)为固化剂,采用示差扫描量热法(DSC),TGA,红外光谱及剪切强度测试研究了双酚F环氧树脂/DHPZ-DA粘接体系固化行为及耐热性。由Kissinger和Ozawa方法计算得到固化体系的表观活化能分别为80.1 kJ/mol和84.3kJ/mol。由Crane方程求得的表观反应级数为0.93。该胶粘剂体系Tg>200℃,当双酚F环氧树脂与DHPZ-DA固化剂的物质的量比为10∶4时,其室温剪切强度与150℃老化24 h后的剪切强度均大于12 MPa,表现出良好的耐热性。  相似文献   

9.
对E-44环氧树脂,1,2-环己二醇二缩水甘油醚与E-44环氧树脂的混合物,1,2-环己二醇二缩水甘油醚分别与二氨基二苯基甲烷的固化反应应用示差扫描量热仪(DSC)进行了研究。在E-44环氧树脂中加入1,2-环己二醇二缩水甘油醚后,不但对环氧树脂有较好的稀释作用,降低了环氧体系固化反应的表观活化能,增加了环氧树脂的固化反应活性和固化反应速度,还提高了环氧固化物的力学性能。测定了反应热焓,计算出固化反应的表观活化能分别为46.08 kJ/mol,39.50 kJ/mol,35.58 kJ/mol,相应的固化反应级数分别为0.86,0.84,0.83。  相似文献   

10.
采用示差扫描量热仪、红外光谱仪对聚醚砜增韧4,4′-二氨基二苯甲烷环氧树脂/4,4′-二氨基二苯砜(TGDDM/DDS)的固化过程进行了研究,运用Kissinger法、Flynn-Wall-Ozawa法和Crane方程计算了固化体系的表观活化能和反应级数。研究表明:聚醚砜的加入促进了环氧树脂的固化,并且随着聚醚砜含量的提高,体系的表观活化能逐渐降低,反应级数均接近于1。  相似文献   

11.
对硫脲改性胺(3,3′-二乙基4,4′-二氨基二苯基甲烷和二元脂肪胺A)固化剂固化环氧树脂进行了系统研究,分析了合成反应时间、反应温度和单体配料比对固化剂性能的影响,并进一步考察了固化剂与环氧树脂的最佳掺量比以及固化产物的热性能和力学性能。实验结果表明:反应时间为2.5 h,反应温度为130℃,3,3′-二乙基4,4′-二氨基二苯基甲烷与硫脲和二元脂肪胺A的物质的量比为1∶0.5∶0.4时,合成的固化剂以1∶3加入环氧树脂中,体系能在室温环境下1 h左右凝胶,该体系经室温固化再以100℃的温度后固化之后具有较好的耐热性能和冲击韧性。  相似文献   

12.
用示差扫描量热仪(DSC)对环氧树脂/苯乙烯-马来酸酐共聚物/甲基咪唑体系的固化反应过程进行了分析,并用Kissinger和Ozawa方法分别求得固化反应的表观活化能ΔE为58.27 kJ/mol和64.93 kJ/mol;根据Crane理论计算得到该体系的固化反应级数n=0.85,为该环氧树脂体系的固化工艺确定提供理论依据。  相似文献   

13.
等温DSC研究E-51/DDS固化动力学   总被引:1,自引:0,他引:1  
用等温DSC研究了双酚A二缩水甘油醚(E-51)与4,4’-二氨基二苯砜的固化动力学,探讨了固化反应机理。结果表明,固化反应具有自催化和扩散控制的特征,反应产生的羟基可加速反应。计算了固化反应各步的动力学参数,得到E_(a1)=68.79kJ/mol,lnA_1=10.28,E_(a2)=240.7kJ/mol,lnA_2=54.0。  相似文献   

14.
联苯酚醛环氧树脂固化动力学及热性能研究   总被引:1,自引:0,他引:1  
以4,4'-二氨基二苯砜(DDS)为固化剂,采用非等温示差扫描量热法(DSC)研究了联苯酚醛环氧树脂(BPNE)的固化动力学。通过外推法确定了体系的固化工艺。采用Kissinger、Ozawa法计算出固化体系的表观活化能,根据Crane理论计算得到该体系的固化反应级数。采用DSC,热重分析(TGA)研究了固化物的耐热性。结果表明:BPNE的固化工艺为160℃/2h+200℃/2h+230℃/2h;固化反应的活化能约为61.86kJ/mol,指前因子为5.27×105min-1,反应级数为1.1;玻璃化转变温度(Tg)为167℃,其10%热失重温度为398.1℃,800℃残炭率为29.37%,与双酚A环氧树脂/DDS固化物相比,分别提高了22℃,11.71%。  相似文献   

15.
一种新型芳胺固化剂的性能研究   总被引:2,自引:1,他引:1  
以双酚A为原料,通过硝化和还原反应制备2,2-二(3-氨基-4-羟基)苯基丙烷化合物(HAPP).以HAPP为固化剂,测定环氧树脂的凝胶特性,用DSC研究环氧树脂的固化反应,确定固化工艺条件,并用Kissinger及Ozawa方法分别计算得到该体系固化反应的表现活化能为42.30KJ//mol和46.68kJ/mol,固化反应级数为0.86.研究结果表明,HAPP在固化环氧树脂时具有自催化作用,因而固化反应活化能较低.与间苯二胺顺丁烯二酸酐和二氨基二苯基甲烷固化荆相比,由于HAPP的苯环上带有羟基且为刚性的分子结构,既降低了固化温度,又提高了力学性能.HAPP固化环氧树脂/芳纶纤维复合材料的层间剪切强度为34.1MPa,弯曲强度为375MPa,拉伸强度为380MPa.  相似文献   

16.
本文通过DSC法详细研究了4,4-二氨基二苯砜/环氧树脂(E-51/DDS)和4,4-二氨基二苯醚/E-51(E-51/DDE)两种体系的非等温固化动力学,确定了固化反应活化能、指前因子、反应级数等固化动力学参数,推导出两种体系的固化动力学方程。  相似文献   

17.
李莉玲  解芳 《广东化工》2016,(21):61-62
以4,4’-二氨基二苯甲烷为固化剂,采用非等温差式扫描量热法(DSC)研究了氮化铝/环氧树脂的固化动力学,确定了固化体系的凝胶化温度为67.65475℃、固化温度为137.66439℃、后处理温度为177.65657℃。采用Kissinger法和Crane法线性拟合直线得出环氧树脂复合材料的表观活化能为5.778 k J/mol,反应级数为0.68,从而确定其动力学方程模型。  相似文献   

18.
环氧电工塑料的固化反应动力学研究   总被引:1,自引:1,他引:0  
以双马来酰亚胺(BMI)/二氨基二苯砜(DDS)为组合固化剂,采用非等温示差扫描量热法(DSC)研究了邻甲酚醛环氧树脂(ECN)/DDS/BMI三元体系的固化反应动力学,用Kissinger法和Crane公式进行DSC数据处理,获得了固化反应动力学参数,并建立了固化动力学模型,同时结合红外光谱分析探讨了该体系的反应机理。结果表明,ECN/DDS/BMI体系固化反应级数n=0.93;表观活化能Ea=58.2 kJ/mol,与ECN/DDS体系相差很小,BMI的加入对体系的固化工艺影响不大,ECN/DDS/BMI体系的固化动力学模型与ECN/DDS体系相似。  相似文献   

19.
以二苯甲烷双马来酰亚胺(BDM)、4,4,-二氨基二苯甲烷(DDM)为原料,采用Michael加成法制得环氧树脂(E-44)固化剂(BDM-DDM),通过红外光谱(FT-IR)和液质联用(LC-MS)手段验证了所得产物为目标产物,用非等温DSC法探究了BDM-DDM与E-44固化体系的固化过程,结果表明:非等温差示扫描量热(DSC)法能够确定BDM-DDM/E-44固化体系的固化工艺。利用Kissinger方程和Crane方程进行计算可得到固化反应的反应活化能Ea为49.92KJ/mol和反应级数n为0.98。  相似文献   

20.
合成了一种含有C=N双键的新型液晶环氧树脂(LCER),利用核磁共振(~1H-NMR)、差示扫描量热分析(DSC)和偏光显微镜(POM)对其结构和性能进行表征。研究结果表明:LCER为向列型液晶,其液晶相存在温度为78~103℃。对其与固化剂4,4′-二氨基二苯甲烷(DDM)和4,4′-二氨基二苯砜(DDS)的固化反应进行了对比。试验结果表明:随着升温速率的增加,固化体系的稳定性提高,且LCER/DDM固化体系的热稳定性更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号