首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
优化复合酶(纤维素酶-果胶酶-木瓜蛋白酶)提取石榴幼果总黄酮的工艺,并测定其抑制α-葡萄糖苷酶活性。以总黄酮得率为评价指标,在单因素实验基础上,D-最优混料设计优化复合酶配比,正交试验设计对料液比、介质pH、酶解温度、酶解时间进行优化,并以PNPG为底物测定总黄酮对α-葡萄糖苷酶的抑制活性。结果显示:复合酶最优配比为:纤维素酶44.2%、果胶酶31.6%、木瓜蛋白酶24.2%,最佳提取条件为:料液比1∶18 (g/mL)、介质pH5.0、酶解温度50℃、酶解时间4.0 h,总黄酮得率为3.38%,其浓度为1.5 mg/mL时,对α-葡萄糖苷酶抑制率达到63.9%,抑制作用的IC_(50)为1.059 mg/mL,在浓度0.15~1.5 mg/mL范围内,石榴幼果总黄酮浓度与其对α-葡萄糖苷酶抑制效果之间呈现一定的正相关关系,其抑制机理属于可逆性抑制和非竞争性抑制。该方法可为石榴幼果总黄酮的提取和应用提供一定的科学依据。  相似文献   

2.
采用超声辅助酶法提取黄刺浆果总黄酮。在单因素试验的基础上,通过响应面法优化黄刺浆果总黄酮的提取工艺,并评价总黄酮对DPPH自由基的清除能力、对α-淀粉酶活性和α-葡萄糖苷酶活性的抑制作用。结果表明:最佳提取工艺为纤维素酶添加量6%(以黄刺浆果质量计)、酶解温度41℃、超声时间25 min、甲醇体积分数70%、料液比1∶25(g/mL)。在此条件下,黄刺浆果总黄酮得率为(22.53±0.18)mg/g。黄刺浆果总黄酮对DPPH自由基的IC50为1.90 mg/mL、对α-淀粉酶活性和α-葡萄糖苷酶活性的IC50分别为11.00、10.09 mg/mL,表明黄刺浆果总黄酮具有较强的生物活性。  相似文献   

3.
以紫山药粉为原料,对微波预处理-超声波提取紫山药多糖的工艺进行优化,并以α-葡萄糖苷酶抑制模型研究其对α-葡萄糖苷酶活性的抑制作用。通过单因素及正交试验确定最佳提取工艺为料液比1∶40(g/mL)、微波功率300 W、微波时间30 s、超声功率270 W、超声时间30 min。在最佳工艺条件下,紫山药多糖平均得率为11.12%。醇沉后的紫山药多糖粉末中多糖的质量分数为45.80%。α-葡萄糖苷酶活性抑制试验中,紫山药多糖表现出明显的抑制作用,对α-葡萄糖苷酶抑制能力较阿卡波糖弱。  相似文献   

4.
该研究以虎杖白藜芦醇提取率为考察指标,通过单因素试验及正交试验方法确定白藜芦醇的最佳提取工艺,并对其体外抑制α-淀粉酶和α-葡萄糖苷酶活性进行了考察。试验结果表明,最优提取工艺为:乙醇体积分数为60%,料液比为1∶20,微波提取参数为50℃、700 W、700s。在该提取工艺下,虎杖白藜芦醇提取率为2.14%。体外抑制α-淀粉酶和α-葡萄糖苷酶活性表明,白藜芦醇对两者都有较好的抑制作用,抑制率分别为69.42%和74.39%。  相似文献   

5.
以芦丁为标样,香蕉花中黄酮提取量为参考指标,探讨乙醇回流提取香蕉花黄酮工艺,并用α-葡萄糖苷酶对香蕉花乙醇提取物进行活性分析,确定α-葡萄糖苷酶抑制类型。结果表明:用乙醇回流提取香蕉花黄酮的最佳工艺条件为乙醇溶液体积分数60%、料液比1:30(g/mL)、提取温度65℃、提取时间1h,平均黄酮提取量为26.25mg/mL;α-葡萄糖苷酶对香蕉花乙醇提取物有较强的酶抑制活性,抑制率可达到88.56%;α-葡萄糖苷酶抑制剂的类型是竞争性抑制,α-葡萄糖苷酶Km=674.074μg/mL。  相似文献   

6.
本研究探索了五味子中总木脂素、总黄酮、总三萜及五味子醇乙、五味子甲素、五味子醇甲、五味子酯甲对α-葡萄糖苷酶活性的抑制作用。利用体外α-葡萄糖苷酶活性抑制模型,以4-硝基苯-α-D-吡喃葡萄糖苷(PNPG)为底物,阿卡波糖(ACAR)为阳性对照,测定了五味子中总木脂素、总黄酮、总三萜及五味子醇乙、五味子甲素、五味子醇甲、五味子酯甲对α-葡萄糖苷酶活性的体外抑制作用。五味子中总木脂素、总黄酮、总三萜浓度为1.0 mg/m L对α-葡萄糖苷酶抑制率分别为96.15±1.52%、60.33±1.84%和48.62±2.15%,五味子醇乙、五味子甲素、五味子醇甲和五味子酯甲浓度为0.33 mg/m L对α-葡萄糖苷酶活性的抑制率分别为96.53±1.62%、68.48±1.83%、15.57±2.37%和6.24±2.49%。五味子中总木脂素及五味子醇乙均对α-葡萄糖苷酶活性有显著抑制作用,且具有明显的量效关系。  相似文献   

7.
南瓜多糖对α-葡萄糖苷酶抑制作用的研究   总被引:2,自引:0,他引:2  
实验目的:通过南瓜多糖(Pumpkin Polysaccharide,PP)对α-葡萄糖苷酶活性的影响,探讨南瓜多糖降血糖作用的可能机制.实验方法:实验依次采用加热浸提、有机溶剂分步萃取、减压浓缩、冷冻干燥等工艺方法制备南瓜多糖;提取正常大鼠小肠上段-α葡萄糖苷酶,酶活力采用P-硝基苯麦芽庚糖(PNPG)比色法进行测定,优化α-葡萄糖苷酶作用的最佳实验条件,考察南瓜多糖对α-葡萄糖苷酶活性的影响.实验结果:在实验优化的α-葡萄糖苷酶作用的反应条件下,即在反应时间2h、反应温度49℃、缓冲液pH6.0、底物PNPG浓度为10mmol/L的实验条件下,南瓜多糖对α-葡萄糖苷酶的抑制作用较弱.结论:南瓜多糖的降血糖作用不是通过抑制α-葡萄糖苷酶的活性实现的,而是通过其它途径实现的.  相似文献   

8.
采用响应面法优化超声提取苦瓜皂苷的最佳工艺,并考察最佳提取工艺条件下提取物对α-葡萄糖苷酶的抑制活性。试验结果表明,超声提取苦瓜皂苷的最佳工艺条件为固液比1∶15(g/mL)、乙醇浓度75% 、超声时间95 min、提取温度50℃,在该条件下苦瓜皂苷的提取率可达2.21% ,其对α-葡萄糖苷酶抑制的IC50值为5.48 mg/mL。  相似文献   

9.
为了提高花生芽中白藜芦醇的提取率,此试验通过考察液料比、亚临界萃取温度、萃取时间、提取次数对花生芽中白藜芦醇提取率的影响,在单因素试验基础上进行响应面优化亚临界水萃取花生芽中白藜芦醇的工艺。并通过测定白藜芦醇纯化物抑制α-淀粉酶和α-葡萄糖苷酶活性的能力研究其抑制酶活性。结果表明,亚临界水萃取花生芽中白藜芦醇的最优工艺为:萃取温度135℃,萃取时间30 min,液料比130∶1(m L/g),在此条件下整个试验过程重复三次,白藜芦醇提取率为(7.65±0.04)mg/g。花生芽白藜芦醇具有良好的抑制酶活性能力,其对α-淀粉酶和α-葡萄糖苷酶的抑制率分别为67.36%、73.38%。  相似文献   

10.
探究柱层析循环联合法提取刺玫果肉中目标成分(多糖、总黄酮、总皂苷)的工艺条件及其体外活性。以提取液中目标成分的含量为指标,通过对乙醇体积分数、吸涨体积、浸泡平衡时间、超声时间的考察确定最佳提取工艺。测定刺玫果肉目标成分的提取物对α-葡萄糖苷酶的抑制率及对亚硝酸盐的清除率。结果表明,在最佳提取条件下,刺玫果肉目标成分的提取率均在90%以上;分离后,干浸膏中多糖、总黄酮、总皂苷的含量分别为428.5、484.5、122.5 mg/g。纯化后,干浸膏中多糖、总黄酮、总皂苷的含量分别为804.1、772.7、396.4 mg/g。刺玫果肉目标成分的提取物抑制α-葡萄糖苷酶活性的能力均强于阳性对照阿卡波糖,表明其具有显著的体外降糖作用;刺玫果肉目标成分的提取物清除亚硝酸盐的IC50值均高于阳性对照维生素C,表明其具有较弱的亚硝酸盐清除活性。柱层析循环联合法可以同时提取多糖、总黄酮、总皂苷,且提取效率较高,为刺玫果产品的开发提供依据。  相似文献   

11.
探究苦荞提取物抑制α-葡萄糖苷酶活性的物质基础和作用机制。比较研究了苦荞不同溶剂提取物对α-葡萄糖苷酶活性的抑制作用,采用超滤技术,结合HPLC分析鉴定了苦荞中抑制α-葡萄糖苷酶活性的主要成分,并研究了其相互作用机制。结果表明,苦荞80%乙醇提取物对α-葡萄糖苷酶活性的抑制效果最为明显,其次为30%丙酮提取物,而水提取物相对较差。进一步研究发现,80%乙醇提取物中主要有3种成分在抑制α-葡萄糖苷酶活性中发挥着主要作用,其中2种物质分别是芦丁和槲皮素,两者可与α-葡萄糖苷酶中的多个氨基酸残基形成氢键,从而"占据"酶的活性中心,抑制其活性。  相似文献   

12.
为优化滁菊活性成分低温浸提工艺,以滁菊总多酚及总黄酮提取率为指标,考察时间、温度、液固比等因素对提取效果的影响,并采用正交实验优化浸提工艺 结果表明,滁菊低温浸提最佳工艺条件为:提取温度为60℃、液固比为30:1、浸提时间为50min,在此条件下,总多酚及总黄酮提取率分别为5.905、53.138mg/g滁菊浸提液对α-葡萄糖苷酶活性具有抑制作用,IC50为32μg/mL.  相似文献   

13.
曾岚  吴晖  李晓凤 《食品科技》2012,(5):208-211,215
目的:筛选纯化甘草α-葡萄糖苷酶抑制物质的最佳大孔吸附树脂,并对影响纯化的各种因素进行系统的研究,为工业化生产提供参考。方法:通过检测大孔树脂吸附甘草液中α-葡萄糖苷酶抑制物质的量,以α-葡萄糖苷酶抑制物质酶活性抑制率为指标对工艺进行评价,确定甘草中α-葡萄糖苷酶抑制物质的最佳纯化工艺。结果:OU-2型大孔树脂纯化效果最好,其最佳工艺为药材与树脂的比例为1/25、pH为5~6,吸附完全后,先以水洗脱,再以3BV70%乙醇洗脱。经OU-2处理后的甘草α-葡萄糖苷酶抑制物质酶活性抑制率高达95%。结论:此法简单可行,分离效果好,能满足大生产的要求。  相似文献   

14.
刘旭  刘微微  曹学丽 《食品科学》2012,33(4):134-139
在单因素试验基础上,对乙醇体积分数、料液比和提取次数3因素进行Box-Behnken设计及响应面分析,优化白背三七黄酮超声提取条件,将白背三七粗提物进行分级萃取,并对不同级分萃取物的黄酮含量及α-葡萄糖苷酶抑制活性进行了考察。结果表明超声辅助提取白背三七中黄酮化合物的优化工艺参数为乙醇体积分数55%、料液比1:35(g/mL)、提取次数4次,在此条件下总黄酮得率为3.071%(30.71mg/g),与预测值(3.095%)基本相符;经高效液相色谱分析,粗提物中主要化合物均具有黄酮特征吸收。分级萃取物中以乙酸乙酯相中黄酮含量及α-葡萄糖苷酶抑制活性最高。  相似文献   

15.
从番石榴叶中提取总黄酮以及多糖,测定其对α-葡萄糖苷酶以及猪胰液α-淀粉酶抑制活性以评估其降血糖活性。结果表明番石榴叶中提取的黄酮类以及多糖类化合物对这2种酶都具有较好的抑制活性,其中黄酮和多糖对蔗糖酶的抑制率分别为63.5%和29.3%,对麦芽糖酶的抑制率分别为47.7%和20.6%,对α-淀粉酶的抑制率分别为54.4%和31.9%。此外,所提取的总黄酮以及多糖对α-葡萄糖苷酶以及猪胰液α-淀粉酶的抑制活性存在协同作用,两者混合的酶抑制活性更好,其中黄酮和多糖的混合物对蔗糖酶,麦芽糖酶以及α-淀粉酶的抑制率分别为75.8%,53.5%和60.1%。  相似文献   

16.
以金线莲为原材料,采用超声辅助提取法提取金线莲α-葡萄糖苷酶抑制剂,考察提取温度、提取时间、固液比、提取次数对α-葡萄糖苷酶抑制率的影响。在单因素试验结果的基础上,采用正交试验对提取工艺条件进行优化。确定最佳提取工艺条件为提取温度60℃,提取时间90 min,固液比1∶15(g∶mL),提取次数为1次。在此工艺条件下,所得的金线莲提取液对α-葡萄糖苷酶的抑制率为31.98%。  相似文献   

17.
L-阿拉伯糖对α-葡萄糖苷酶抑制活性的体外试验研究   总被引:1,自引:0,他引:1  
目的探讨L-阿拉伯糖对小肠α-葡萄糖苷酶的抑制作用及与阿卡波糖的联用效应。方法利用体外实验,提取大鼠小肠粘膜上清液为α-葡萄糖苷酶粗酶液,分别以终浓度为60 mg/ml蔗糖、20 mg/ml麦芽糖/α-糊精为底物,建立最佳抑制反应体系,测定L-阿拉伯糖对α-葡萄糖苷酶抑制活性(IC50)及抑制作用类型;采用4×3析因设计,研究L-阿拉伯糖与阿卡波糖联用效果。结果以蔗糖、麦芽糖、α-糊精为底物时,L-阿拉伯糖对小肠α-葡萄糖苷酶活性均有一定抑制作用,但选择性较高地抑制蔗糖酶活性,当L-阿拉伯糖添加量为0.5%蔗糖浓度时酶活性抑制百分率>50%,最高酶活性抑制百分率约93%,且有良好剂量-反应关系,IC50为0.164 mg/ml,抑制类型为反竞争性抑制(Ki,0.558 mg/ml);与阿卡波糖联用二者有交互作用,尤其以蔗糖为底物时联用效果较明显,联合应用可能提高了抑制活性。结论 L-阿拉伯糖有抑制α-葡萄糖苷酶活性作用,尤其对蔗糖酶有良好的选择性抑制;在α-葡萄糖苷酶抑制作用方面,其与阿卡波糖有一定联用效果,L-阿拉伯糖在含糖食品中可能有较良好的实际应用前景。  相似文献   

18.
本文研究了甘草中α-葡萄糖苷酶抑制物质的提取工艺.采用单因素实验和正交实验确定了各因素对提取工艺的影响和最佳工艺条件,其最佳提取工艺为:提取温度为30℃、提取时间为1h、提取试剂为水,料液比为1∶10,此时,α-葡萄糖苷酶抑制率达到48.94%.提取条件影响工艺的主次顺序依次为:提取时间、提取温度、料液比、提取试剂.  相似文献   

19.
以花椒果皮为研究对象,通过乙醇提取得到花椒果皮粗多酚,再采用分级萃取,依次得到二氯甲烷相(F1)、乙酸乙酯相(F2)、正丁醇相(F3)和水相(F4),采用超高效液相色谱-电喷雾飞行时间串联质谱法分析其酚类物质组成,通过对α-葡萄糖苷酶的抑制作用以及II型糖尿病模型小鼠评价其降糖活性。结果从花椒果皮中共鉴定出20种多酚类化合物,包括9种酚酸及其衍生物和11种黄酮类化合物。各相中总酚、总黄酮及多酚类化合物含量的变化趋势为F2>F3>F4>F1,说明分级萃取对多酚类物质能起到良好的富集作用。花椒果皮多酚对α-葡萄糖苷酶活性有抑制作用,其中F3的抑制率最高可以达到85.86%,且是通过反竞争性抑制的方式抑制α-葡萄糖苷酶活性,F3中的主要活性成分绿原酸和芦丁与α-葡萄糖苷酶活性的抑制率显著正相关。F3能使糖尿病小鼠的空腹血糖降低64.2%,口服糖耐量降低21.42%,对小鼠的体质量和饮食异常也有一定改善作用。因此花椒果皮多酚有望成为具有预防和治疗糖尿病潜质的活性成分。  相似文献   

20.
本文采用缓冻协同微波辅助提取手段,通过单因素实验,确定合适的因素,采用响应面优化方法对黄秋葵多糖提取工艺条件进行优化;采用对硝基苯基-α-D-吡喃葡萄糖苷(pNPG)法测定黄秋葵多糖对α-葡萄糖苷酶活性的影响,通过小鼠实验,测定黄秋葵多糖对肾上腺素引起高血糖小鼠血糖水平的影响,从而探索黄秋葵多糖的降血糖作用。结果表明:通过响应面优化提取条件,确定黄秋葵多糖的最佳提取工艺条件是缓冻时间16 h,液料比40:1(mL/g),浸提时间2.2 h;浸提温度65℃,微波功率310 W,在此条件下,黄秋葵多糖的得率可达到17.17%,明显高于相对单一的提取工艺。黄秋葵多糖能够明显抑制α-葡萄糖苷酶的活性,在10 mg·mL-1剂量下抑制率达68.26%;且极显著降低肾上腺素引起高血糖小鼠的血糖水平(P<0.01)。缓冻协同微波处理能够显著提高黄秋葵多糖的得率,黄秋葵多糖具有良好的降血糖作用,具备开发成为预防和治疗糖尿病的市场应用与开发前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号