首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and structure of a monodispersed spherical Si3N4/SiC nanocomposite powder have been studied. The Si3N4/SiC nanocomposite powder was synthesized by heating under argon a spherical Si3N4/C powder. The spherical Si3N4/C powder was prepared by heating a spherical organosilica powder in a nitrogen atmosphere and was composed of a mixture of nanosized Si3N4 and free carbon particles. During the heat treatment at 1450°C, the Si3N4/C powder became a Si3N4/SiC composite powder and finally a SiC powder after 8 h, while retaining its spherical shape. The composition of the Si3N4/SiC composite powder changed with the duration of the heat treatment. The results of TEM, SEM, and selected area electron diffraction showed that the Si3N4/SiC composite powder was composed of homogeneously distributed nanosized Si3N4 and SiC particles.  相似文献   

2.
The results of two-step oxidation experiments on chemically-vapor-deposited Si3N4 and SiC at 1350°C show that a correlation exists between the presence of a Si2N2O interphase and the strong oxidation resistance of Si3N4. During normal oxidation, k p for SiC was 15 times higher than that for Si3N4, and the oxide scale on Si3N4 was found by SEM and TEM to contain a prominent Si2N2O inner layer. However, when oxidized samples are annealed in Ar for 1.5 h at 1500°C and reoxidized at 1350°C as before, three things happen: the oxidation k p increases over 55-fold for Si3N4, and 3.5-fold for SiC; the Si3N4 and SiC oxidize with nearly equal k p's; and, most significant, the oxide scale on Si3N4 is found to be lacking an inner Si2N2O layer. The implications of this correlation for the competing models of Si3N4 oxidation are discussed.  相似文献   

3.
This paper deals with the densification and phase transformation during pressureless sintering of Si3N4 with LiYO2 as the sintering additive. The dilatometric shrinkage data show that the first Li2O- rich liquid forms as low as 1250°C, resulting in a significant reduction of sintering temperature. On sintering at 1500°C the bulk density increases to more than 90% of the theoretical density with only minor phase transformation from α-Si3N4 to β-Si3N4 taking place. At 1600°C the secondary phase has been completely converted into a glassy phase and total conversion of α-Si3N4 to β-Si3N4 takes place. The grain growth is anisotropic, leading to a microstructure which has potential for enhanced fracture toughness. Li2O evaporates during sintering. Thus, the liquid phase is transient and the final material might have promising mechanical properties as well as promising high-temperature properties despite the low sintering temperature. The results show that the Li2O−Y2O3 system can provide very effective low-temperature sintering additives for silicon nitride.  相似文献   

4.
Si3N4 composite materials containing up to 20 vol% SiC whiskers were slip cast and pressureless sintered at 1820°C and 0.13 MPa of N2. Viscosimetry showed no influence of whisker loading on the rheology of the highly concentrated aqueous slips up to 15 vol% whiskers. During casting the whiskers were preferentially aligned parallel to the mold surfaces. Depending on the whisker loading, green densities of 0.64 to 0.69 fractional density could be achieved. Strong anisotropic shrinkage occurred during sintering with a maximum linear shrinkage of 21% perpendicular but only 7% parallel to the whisker plane. With increasing whisker content from 0 to 20 vol% sintered densities decreased from 0.98 to 0.88, respectively.  相似文献   

5.
TiN-coated Si3N4 particles were prepared by depositing TiO2 on the Si3N4 surfaces from Ti(O- i -C3H7)4 solution, the TiO2 being formed by controlled hydrolysis, then subsequently nitrided with NH3 gas. A homogeneous TiO2 coating was achieved by heating a Si3N4 suspension containing 1.0 vol% H2O with the precursor at 40°C. Nitridation successfully produced Si3N4 particles coated with 10–20 nm TiN particles. Spark plasma sintering of these TiN/Si3N4 particles at 1600°C yielded composite ceramics with a relative density of 96% at 25 vol% TiN and an electrical resistivity of 10−3Ω·cm in compositions of 17.5 and 25 vol% TiN/Si3N4, making these ceramics suitable for electric discharge machining.  相似文献   

6.
The high-temperature flexural strength of hot-pressed silicon nitride (Si3N4) and Si3N4-whisker-reinforced Si3N4-matrix composites has been measured at a crosshead speed of 1.27 mm/min and temperatures up to 1400°C in a nitrogen atmosphere. Load–displacement curves for whisker-reinforced composites showed nonelastic fracture behavior at 1400°C. In contrast, such behavior was not observed for monolithic Si3N4. Microstructures of both materials have been examined by scanning and transmission electron microscopy. The results indicate that grain-boundary sliding could be responsible for strength degradation in both monolithic Si3N4 and its whisker composites. The origin of the nonelastic failure behavior of Si3N4-whisker composite at 1400°C was not positively identified but several possibilities are discussed.  相似文献   

7.
The oxidation behaviors of monolithic Si3N4 and nanocomposite Si3N4-SiC with Yb2O3 as a sintering aid were investigated. The specimens were exposed to air at temperatures between 1200° and 1500°C for up to 200 h. Parabolic weight gains with respect to exposure time were observed for both specimens. The oxidation products formed on the surface also were similar, i.e., a mixture of crystalline Yb2Si2O7 and SiO2 (cristobalite). However, strength retention after oxidation was much higher for the nanocomposite Si3N4-SiC compared to the monolithic Si3N4. The SiC particles of the nanocomposite at the grain boundary were effective in suppressing the migration of Yb3+ ions from the bulk grain-boundary region to the surface during the oxidation process. As a result, depletion of yttribium ions, which led to the formation of a damaged zone beneath the oxide layer, was prevented.  相似文献   

8.
Si3N4/SiC composite materials have been fabricated by reaction-sintering and postsintering steps. The green body containing Si metal and SiC particles was reaction-sintered at 1370°C in a flowing N2/H2 gas mixture. The initial reaction product was dominated by alpha-Si3N4. However, as the reaction processed there was a gradual increase in the proportion of β-Si3N4. The reaction-bonded composite consisting of alpha-Si3N4, β-Si3N4, and SiC was heat-treated again at 2000°C for 150 min under 7-MPa N2 gas pressure. The addition of SiC enhanced the reaction-sintering process and resulted in a fine microstructure, which in turn improved fracture strength to as high as 1220 MPa. The high value in flexural strength is attributed to the formation of uniformly elongated β-Si3N4 grains as well as small size of the grains (length = 2 μm, thickness = 0.5 μm). The reaction mechanism of the reaction sintering and the mechanical properties of the composite are discussed in terms of the development of microstructures.  相似文献   

9.
Commercially produced pressureless sintered Si3N4, SiC, and SiAlON were characterized with respect to density, phases present, bend strength, and oxidation resistance. The room-temperature bend strengths of sintered Si3N4, SiC, and SiAlON are comparable. However, the room-temperature strengths are much lower (=40 to 50%) than the room-temperature strength of hot–pressed Si3N4 (NC-132). The strength loss in Si3N4 and SiAlON materials at high temperature was attributed to a viscous grain-boundary phase retained during cooling from the sintering temperature. The oxidation resistance of sintered a-SiC was the best of any materials tested.  相似文献   

10.
Porous Si3N4 ceramics were synthesized by pressureless sintering of green compacts prepared using slip casting of slurries containing Si3N4, 5 wt% Y2O3+2 wt% Al2O3, and 0–60% organic whiskers composed of phenol–formaldehyde resin with solids loading up to 60 wt%. Rheological properties of slurries were optimized to achieve a high degree of dispersion with a high solid-volume fraction. Samples were heated at 800°C in air and sintered at 1850°C in a N2 atmosphere. Porosities ranging from 0% to 45% were obtained by the whisker contents (corresponding to 0–60 vol% whisker). Samples exhibited a uniform pore distribution. Their rod-shaped pore morphology originated from burnout of whiskers, and an extremely dense Si3N4 matrix.  相似文献   

11.
Using intermediate, liquid-forming compositions in the (Y,La)2O3-AlN system as additives, fully dense Si3N4 ceramics with high strength at high temperature have been obtained by pressureless sintering. The ceramics contain rod-shaped β-Si3N4 with M' or K' solid solutions as grain-boundary phases. The strength of these ceramics is 1150 MPa at 1200°C, and the room-temperature toughness is maintained at }7 MPa·m1/2. Phase relations that are pertinent to the new additive compositions are delineated to rationalize their beneficial effects on sinterability and mechanical properties.  相似文献   

12.
The influence of phase formation on the dielectric properties of silicon nitride (Si3N4) ceramics, which were produced by pressureless sintering with additives in MgO–Al2O3–SiO2 system, was investigated. It seems that the difference in the dielectric properties of Si3N4 ceramics sintered at different temperatures was mainly due to the difference of the relative content of α-Si3N4, β-Si3N4, and the intermediate product (Si2N2O) in the samples. Compared with α-Si3N4 and Si2N2O, β-Si3N4 is believed to be a major factor influencing the dielectric constant. The high-dielectric constant of β-Si3N4 could be attributed to the ionic relaxation polarization.  相似文献   

13.
Ultrafine amorphous Si3N4 powders were synthesized from laser-heated gases and cold-pressed into pellets for sintering experiments. At temperatures >1300°C, the powders crystallized with a concurrent, linearly proportional decrease in surface area. These powders densified on a local scale without additives or pressure.  相似文献   

14.
A dense and isotropic Si3N4 composite body containing 25 vol% of α-SiC platelets, with average particle size of 24μm and aspect ratio of 8 to 10, was fabricated by hot isostatic pressing without any addition of sintering aids. In this composite, desirable properties for structural ceramics to be used in long-term high-temperature applications are conveniently combined: a fracture resistance comparable with that of Si3N4 sintered with conspicuous amounts of additives, as well as a superior time-dependent strength and deformation behavior up to 1400°C, was found. The high-temperature reliability in the present composite was improved further than that of the additive-free Si3N4, mainly due to mechanisms operating in the wake of the crack. The key to the attainment of a valid synergism between nitride and carbide phase resides both in the presence of pure SiO2 glassy phase at the grain boundary and in the morphology of the reinforcement.  相似文献   

15.
A new method for preparing high bending strength porous silicon nitride (Si3N4) ceramics with controlled porosity has been developed by using pressureless sintering techniques and phosphoric acid (H3PO4) as the pore-forming agent. The fabrication process is described in detail and the sintering mechanism of porous ceramics is analyzed by the X-ray diffraction method and thermal analysis. The microstructure and mechanical properties of the porous Si3N4 ceramics are investigated, as a function of the content of H3PO4. The resultant high porous Si3N4 ceramics sintered at 1000°–1200°C show a fine porous structure and a relative high bending strength. The porous structure is caused mainly by the volatilization of the H3PO4 and by the continous reaction of SiP2O7 binder, which could bond on to the Si3N4 grains. Porous Si3N4 ceramics with a porosity of 42%–63%, the bending strength of 50–120 MPa are obtained.  相似文献   

16.
The effects of microstructure and residual stress on the mechanical properties of Si3N4-based three-layer composite materials were investigated. The microstructure of each layer was controlled by the addition of two differently sized silicon carbides: fine SiC nanoparticles (∼200 nm) or relatively large SiC platelets (∼20 µm). When the SiC nanoparticles were added, the average grain size of Si3N4 was reduced because of the inhibition of grain growth by the particles. On the other hand, when the SiC platelets were added, the microstructure of Si3N4 was not much changed because of the large size of the platelets. Three-layer composites were fabricated by placing the Si3N4/SiC-nanoparticle layers on the surface of the Si3N4/SiC-platelet layer. The residual stress was controlled by varying the amount of SiC added. The mechanical properties of three-layer composites with various combinations of microstructure and residual stress level were investigated.  相似文献   

17.
The processing of stepwise graded Si3N4/SiC ceramics by pressureless co-sintering is described. Here, SiC (high elastic modulus, high thermal expansion coefficient) forms the substrate and Si3N4 (low elastic modulus, low thermal expansion coefficient) forms the top contact surface, with a stepwise gradient in composition existing between the two over a depth of ∼1.7 mm. The resulting Si3N4 contact surface is fine-grained and dense, and it contains only 2 vol% yttrium aluminum garnet (YAG) additive. This graded ceramic shows resistance to cone-crack formation under Hertzian indentation, which is attributed to a combined effect of the elastic-modulus gradient and the compressive thermal-expansion-mismatch residual stress present at the contact surface. The presence of the residual stress is corroborated and quantified using Vickers indentation tests. The graded ceramic also possesses wear properties that are significantly improved compared with dense, monolithic Si3N4 containing 2 vol% YAG additive. The improved wear resistance is attributed solely to the large compressive stress present at the contact surface. A modification of the simple wear model by Lawn and co-workers is used to rationalize the wear results. Results from this work clearly show that the introduction of surface compressive residual stresses can significantly improve the wear resistance of polycrystalline ceramics, which may have important implications for the design of contact-damage-resistant ceramics.  相似文献   

18.
A simple processing technique has been developed for joining Si3N4-based ceramics. Thin (<5 μm thick), amorphous, or partially crystalline SiO2-based surface layers were formed, via low-temperature oxidation (at 1200°C), on the faces to be joined. Joining of the surface-coated pieces could then be performed in an inert environment at typical sintering/joining temperatures (i.e., 1700°C), with or without applied gas pressure, via a transient viscous/liquid phase. This method was most effective for Si3N4 ceramics with single oxide sintering additives when a thin (∼1 μm thick), highly smooth (RMS roughness <60 nm) SiO2 layer was formed, and essentially 'pore-free' joints could be formed. However, the method was less suitable for a multi-additive SiAlON material under current experimental conditions, as relatively high roughness (RMS roughness >400 nm) oxide scales formed, leaving residual porosity at the joint interface.  相似文献   

19.
The effect of Si3N4, Ta5Si3, and TaSi2 additions on the oxidation behavior of ZrB2 was characterized at 1200°–1500°C and compared with both ZrB2 and ZrB2/SiC. Significantly improved oxidation resistance of all Si-containing compositions relative to ZrB2 was a result of the formation of a protective layer of borosilicate glass during exposure to the oxidizing environment. Oxidation resistance of the Si3N4-modified ceramics increased with increasing Si3N4 content and was further improved by the addition of Cr and Ta diborides. Chromium and tantalum oxides induced phase separation in the borosilicate glass, which lead to an increase in liquidus temperature and viscosity and to a decrease in oxygen diffusivity and of boria evaporation from the glass. All tantalum silicide-containing compositions demonstrated phase separation in the borosilicate glass and higher oxidation resistance than pure ZrB2, with the effect increasing with temperature. The most oxidation-resistant ceramics contained 15 vol% Ta5Si3, 30 vol% TaSi2, 35 vol% Si3N4, or 20 vol% Si3N4 with 10 mol% CrB2. These materials exceeded the oxidation resistance of the ZrB2/SiC ceramics below 1300°–1400°C. However, the ZrB2/SiC ceramics showed slightly superior oxidation resistance at 1500°C.  相似文献   

20.
The fracture behavior at high temperature of a Si3N4-based SiC-whisker composite fabricated by hot isostatic pressing without sintering aids is compared with that of other highly refractory materials. Particular attention is directed toward evaluating the slow-crack-growth resistance of the composite up to 1440°C and relating this resistance to the microfracture behavior of Si3N4 grains, SiC whiskers, and the intergranular, glassy SiO2 phase. Only thick whiskers operate to bridge the wake of the crack; these whiskers may make a positive contribution to the slow-crack-growth resistance. Impurities detected by EDX microanalysis at the grain boundary, however, apparently degrade the high-temperature properties, a finding supported by internal-friction measurements. Nevertheless, the high potential of the system without sintering aids for high-temperature structural applications has been demonstrated by the time to failure estimated from the measured slow-crack-growth resistance for a fixed flaw size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号