首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
水驱油田无因次采液指数与含水率变化规律,是油藏产能评价和举升方式选择的主要依据.目前,各类研究方法相对丰富,但仍存在许多不足,即经验法和数值模拟法缺乏渗流理论支持,相对渗透率曲线法无法确定无因次采液指数与含水率具体函数式.通过改进油相相对渗透率关系式,引入俞启泰提出的两类油水相渗比值与出口端含水饱和度关系式,分别建立了Ⅰ类和Ⅱ类无因次采液指数与含水率模型,与不同油田相渗实验结果对比显示,Ⅱ类模型与实验结果比较一致.  相似文献   

2.
利用相渗资料和实测流压资料研究了扎尔则油田无因次采油、采液指数,确定了油井产能变化规律;并利用无因次采液指数和无因次产量与流压关系求取了扎尔则油田生产井在井底流压低于饱和压力时的无因次IPR曲线,描述了其变化规律;确定了扎尔则油田合理的井底流压是5.5~6.5 MPa,平均6 MPa,油井平均最大产液能力是253 m3/d,为油田开发后期油井提液生产提供了理论依据。  相似文献   

3.
保持合理采液规模是水驱油藏特高含水期延缓产量递减的主要措施之一,通常可利用岩心测试得到的油水相对渗透率曲线计算无因次采液指数随含水率的变化,以此预测特高含水期油藏合理产液量。然而,由于岩心与非均质油藏内的水驱油过程存在较大差异,使得基于岩心测试的理论无因次采液指数曲线并不适用于矿场实际情况。为此,在并联岩心水驱油实验的基础上,首先基于回归得到包含渗透率及渗透率级差的无因次采液指数曲线方程,建立考虑油藏物性及物性非均质程度影响的无因次采液指数增量图版;然后,将水驱油藏的流场划分为水驱波及区和未波及区,将岩心水驱油实验规律仅应用于水驱波及区,并绘制不同波及系数时的油藏无因次采液指数图版。实例分析结果表明,该方法所需参数较少,计算快捷,能够考虑储层非均质性的影响,并可根据矿场实测采液指数推算水驱波及系数。  相似文献   

4.
由于储层物性非均质程度及渗流场的差异,由岩心驱替实验数据计算的理论无因次采液指数曲线与矿场监测的油井实际产液能力变化规律之间存在较大偏差。文中分析了水驱渗流过程中影响产液能力的主要因素及其在无因次采液指数曲线形态上的表征;结合水驱油藏渗流场的变化特点,评价了无因次采液指数随近井带地层伤害程度及水驱波及过程的动态变化规律;根据矿场监测数据与理论预测结果的差异,建立了地层伤害程度和水驱波及系数的诊断图版,对比矿场监测无因次采液指数与理论无因次采液指数曲线图版的拟合程度,推测地层伤害的趋势及水驱波及系数。研究表明,该方法可提高油井产液能力的预测精度,并快速诊断油藏的水驱开发效果,扩大了理论无因次采液指数曲线的现场应用范围。  相似文献   

5.
异常渗流油藏往往因为或是流体性质异常、或是多孔介质异常、或是流动状况发生变化.从而造成流体渗流不符合达西渗流规律。通过室内试验.确立了异常渗流油藏油水两相渗流特征的研究方法,测试了其油水两相相对渗透率曲线,并由无因次采液(油)指数的变化规律和计算预测曲线研究了异常渗流油藏的油水两相渗流特征。  相似文献   

6.
无因次IPR曲线是进行油气井一点法产能试井与预测流入动态的理论依据。在前人的方法基础之上,从气井二项式产能方程出发,将其整理成无因次形式,通过类比与假设,最后结合实际测试资料并采用Excel拟合得到类似于无因次Vogel方程的气井无因次IPR曲线新方程。新的无因次IPR曲线包含许多地层和流体参数,这些参数发生变化将直接反映在拟合曲线上,这对气藏气井动态分析及现场生产有一定指导意义。  相似文献   

7.
一种两相启动压力曲线的建立方法   总被引:6,自引:3,他引:3  
为探讨两相流体渗流时的启动压力变化规律,对天然岩心进行水驱油和气驱油实验,计算出各自的相对渗透率,然后按单相启动压力梯度公式推算出相对启动压力梯度,绘制油水、油气相渗曲线。研究结果表明,在两相启动压力曲线上,各相的启动压力梯度与驱替相的饱和度之间均呈指数变化规律;气驱、水驱后期指数变化规律遭到破坏,是驱替后期驱油效率急剧变小的主要原因。图1表2参11  相似文献   

8.
启动压力和毛管压力对低渗透油田生产参数影响   总被引:5,自引:2,他引:3  
为解决低渗透油田生产参数变化与中、高渗透油田不同的问题,考虑油藏存在启动压力、毛管力、重力等因素情况下,推导了低渗透油田油水两相渗流时生产参数含水率、无因次采油指数、无因次采液指数的变化形式,并具体分析了3种因素对生产参数的影响,指出毛管力和启动压力的存在增加了含水率,增加了无因次采液指数,对无因次采油指数无影响。  相似文献   

9.
油藏合理地层压力保持水平与含水率关系   总被引:1,自引:0,他引:1  
地层压力是判断地层能量充足与否的一个重要标志。根据采油工艺基本原理和相渗关系推导出无因次采液指数和采液指数与含水率的关系式,在此基础上通过对油藏相对渗透率曲线的归一化处理,利用注采比原理,建立了不同采油速度下的合理地层压力与含水率以及注采比之间的关系,并给出油田应用实例。研究结果表明,无因次采液指数或采液指数取最小值时,合理地层压力保持水平会急剧降低。该方法对于分析中、低含水开发阶段注水工艺和采油速度具有一定指导意义。  相似文献   

10.
谷建伟  孔令瑾  刘志宏  魏明 《特种油气藏》2015,22(2):78-80,100,154
针对目前无因次采液指数计算方法没有考虑注采井间油水分布特征的问题,采用一维两相水驱油理论,考虑注采井间油水分布差异的影响,引入油水视黏度概念,运用积分方法计算油水视黏度,导出了考虑油水分布特征后的无因次采液指数的计算公式,该方法对准确评价高含水油藏开发效果有指导意义。 实例计算表明,由于考虑了注采井间油水分布的影响,利用平均视黏度计算的无因次采液指数数值,在相同的含水条件下要高于目前常用方法计算的无因次采液指数,最大差异可达 30%。  相似文献   

11.
降压开采过程中凝析油气相渗实验研究   总被引:1,自引:0,他引:1  
目前凝析油气相渗曲线实验测试方法有常规模拟油气替代测试和真实平衡凝析油气测试两种,国内外还没有测量凝析气藏在降压开采过程中凝析油气相渗曲线的相关报道。文章给出了降压相渗实验测试方法,选用Q69-5井的平衡凝析油气和真实岩样进行了平衡凝析油气相渗曲线、降压相渗曲线和常规油气相渗曲线测试,并对3种相渗曲线进行了对比研究。研究结果表明:①降压相渗测试和岩心衰竭实验测试得到的凝析油饱和度具有相同的变化趋势,但前者的数值低于后者;②降压相渗实验测试过程中,凝析油开始析出后出现凝析油饱和度急剧上升和平衡气相相对渗透率急剧下降的现象,当压力降至最大反凝析压力后,凝析气的蒸发作用和平衡气驱作用可使近井地带的渗透性得到部分恢复;③降压相渗曲线比常规油气相渗曲线和平衡凝析油气相渗曲线明显向右偏移,其气相相对渗透率比常规测试和平衡油气测试得到的气相相对渗透率要高。  相似文献   

12.
苏畅  郭平  李士伦  郭肖 《海洋石油》2003,23(2):41-44
时至今日 ,获得凝析油气相对渗透率曲线的方法仍旧是常规的实验手段 ,即采用模拟油 (如煤油 )和模拟气 (如氮气 )。模拟流体典型的界面张力值约为 3 0mN/m ,这与凝析油气的界面张力范围相比高出数十倍 ,在应用该实验曲线时通常采用经验的界面张力校正方法。文章采用实际凝析气体系在真实长岩心上采用稳态法测量了真实凝析油气相对渗透率曲线。而后 ,用常规的煤油和氮气体系测量了目前用于数模和试井输入曲线的代凝析油气相渗曲线。比较两者的区别 ,并采用CMG单井径向一维数模比较了采用不同相渗曲线作为输入曲线时的地下径向凝析油饱和度分布 ,油气采收率。结果表明 ,凝析油气相对渗透率与常规的煤油 -氮气体系相渗差别很大且凝析油气相渗具有明显速敏性 ,两个不同的相对渗透率曲线对凝析油气的最终采收率影响差别很大。凝析气田开发时应用真实的现场凝析气流体和储层岩心作真实凝析油气相渗曲线来作为指导开发方案设计的基础数据。  相似文献   

13.
用凝析油含量不同的凝析气分别在PVT筒和长岩心中进行了衰竭实验,并应用超声波测试技术测试了其饱和度以及高温、高压平衡凝析油气相渗曲线和常温、低压常规油气相渗曲线.实验表明,凝析油含量高的凝析气在多孔介质中凝析油的采收率比PVT筒中约高1倍.采用不同相渗曲线及CMG数值模拟软件对长岩心衰竭实验中凝析油的采收率进行了预测,结果表明,造成凝析油采收率差别的主要原因是界面张力导致凝析油气相渗曲线的差别.在数值模拟中,应当使用真实相渗曲线.对于含凝析油低的凝析气藏,多孔介质中定容衰竭凝析油饱和度远高于PVT筒中凝析油采收率,多孔介质中蒸发现象不明显.凝析油饱和度达到最大值后,随压力的降低不再变化,这表明低渗凝析气藏中尽管凝析油含量低,其污染仍然存在,不能忽视.  相似文献   

14.
桥口气藏凝析油采收率研究   总被引:5,自引:0,他引:5  
采用实际凝析气体系分别在PVT筒和实际岩心中进行了衰竭实验。研究结果表明,PVT筒比岩心中衰竭实验凝析油采收率低得多。为了探讨造成凝析油采收率差别的原因,首先测试了临界流动饱和度,继而做出了标准常规相渗曲线(氮气驱煤油)以及平衡油和平衡气在高温高压下相渗曲线。利用两种相渗曲线及GEM油藏模拟软件分别对实验结果进行了预测。结果表明,采用常规相渗曲线所预测的凝析油采收率与PVT中凝析油采收率相近,采用平衡油气相渗曲线所预测的凝析油采收率与用岩心衰竭实验测试的凝析油采收率相近,这表明平衡相渗曲线能够较好地反映实际岩心条件下油气的渗流状况。  相似文献   

15.
凝析油气相渗曲线测试及对采收率的影响   总被引:2,自引:0,他引:2  
相渗曲线是描述油气藏渗流中一个非常重要的参数,标准的测定方法是在室温低压下采用模拟油(精制油)模拟气(氮气或空气)来进行测试,未考虑地下高温高压及平衡油气渗流的实际情况。因此,研究高温高压下处于油气相平衡条件(可代表地下实际渗流情况)的两相渗流相渗曲线具有重要的理论和实际意义。本文建立了平衡油气相渗曲线的测试方法,测试了两类流体的平衡油气相渗及其标准油气相渗,并比较了两者之间的差别。将研究结果应用于长岩心定容衰竭实验模拟预测中,能更好地解释长岩心中富含凝析油型凝析气藏凝析油采收率比PVT筒中CVD测试高的实际原因。同时,还发现平衡凝析油气相渗的速敏性,从而说明了适当提高采气速度有利于提高凝析油采收率的观点,对开发技术政策的制订有重要指导意义。  相似文献   

16.
对凝析气藏开发动态和经济效益的正确预测需要正确模拟这类气藏的液态和相态。模拟流态最重要的是获取有代表性的凝析油气相对渗透率曲线,它是数模和试井分析中最常用的基础曲线,目前通常采用模拟油和模拟气相渗曲线来替代凝析油气相渗曲线。但低界面张力的传统油气在多孔介质中的流动规律并不同于凝析油气的流动规律,凝析油气物性非常接近,凝析油在水与凝析气之间形成一个水动力连续的夹膜,它随着凝析气一起流动。同时多孔介质特性、原生水、润湿性、重力、界面张力、粘滞力、流速等因素对凝析油气流动规律的影响作用也不同于对传统油气流动的影响作用。由于微观渗流规律不同,凝析油气相对渗透率的变化规律不同于传统油气相渗,不能用低界面张力油气体系相渗来代替凝析油气相渗,进而确定了实验实测相渗曲线的重要性和今后的研究方向。  相似文献   

17.
凝析气井产能主要受近井区域的渗流动态控制。在近井区域,压力损耗较高,凝析气的流动压力常常会低于露点压力而导致凝析油在此区域逐渐累积;该区域明显地呈低压、高凝析油饱和度、高界面张力和高流速的特征;常规理论过高估计了高凝析油饱和度带来的堵塞效应,却忽视了高流速对凝析油的剥离效应,研究发现高速流动对近井油气相对渗透率的影响并非象常规理解那样简单,而是呈现出综合效应;如何准确理解高速效应的影响,对于凝析气藏渗流动态分析以及生产动态预测有很重要的意义。文章建立了油气两相渗流的定解问题,得到了拟稳态形式的流入动态方程,在三区渗流机理上首次综合考虑了毛管数和非达西效应对相对渗透率的影响,揭示了高速流动下油气相对渗透率变化及油气分布状态新特征,对不同流入动态模型的对比分析表明,该方法较之现有方法更有助于正确预测生产动态,评估气井产能。  相似文献   

18.
水气交替注入(WAG)是两种传统采油方法的综合,是二次采油和三次采油中颇具潜力的一种方法。由于高粘度的水趋向于在高渗层形成屏蔽,而使气体进入油气藏基岩层或低渗层,提高了气体的驱扫效率。通过层状二维剖面模型的模拟研究,证明了在层状凝析气藏中水气交替注入的采收率比循环注气的采收率高,根据全组分模拟器模拟结果可知:水气比、不同的注入采塞、渗透率和残余气饱和度对凝析渍打收率的影响非常明显;崦注入次序、注入  相似文献   

19.
凝析气井在生产中常会出现反凝析现象,会对其产能预测产生影响,特别是在凝析油含量较高的气藏中影响尤为明显。为此,提出了使用关井压力恢复试井结果,计算凝析气井瞬态产能的方法。从油、气两相渗流方程出发,利用相渗曲线定义拟压力,得到线性化后的油气两相渗流方程。结合状态方程及多组分闪蒸计算,准确描述了凝析气藏在开发过程中相态的变化,得到准确的地层压力和油相饱和度关系,实现了压力与拟压力的转化。利用线性化的拟压力方程可计算试井分析图版,并通过试井分析得到地层渗透率等参数。使用这些地层参数,通过拟压力方程计算得到凝析气井的IPR曲线,最终可对凝析气井的产能进行准确计算和预测。将模型的计算结果与实际井例的生产测试数据进行对比,结果表明其计算合理准确,与已有的井产量数据基本吻合,可在凝析气井中推广使用,以获得准确的产能预测数据。  相似文献   

20.
�����������붯̬ȷ�������о�   总被引:2,自引:0,他引:2  
在凝析气藏开发过程中,凝析油在地层中析出将导致气相渗透率和产能降低,研究凝析气井流入动态必须综合考虑析出的凝析油对油气相渗透率的影响。文章在Sarfraz等人研究的基础上,提出了将凝析油气两相拟压力积分分解为两个积分函数之积,一个积分函数与流体高压物性有关,另一个积分函数与有效渗透率有关。利用实际凝析气井不稳定压力恢复试井数据确定拟有效渗透率函数,从而解决了凝析气井产能方程中的真实有效渗透率问题,进而求出两相拟压力,然后利用产能试井数据求出凝析气井流入动态方程。这取代了过去用岩心实验确定的油气两相相对渗透率曲线确定产能方程的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号